MA 106 : Linear Algebra Tutorial 7

Soumya Chatterjee
IIT Bombay
$21^{\text {th }}$ April 2021

Question 7

Which quadric surface does the equation
$7 x^{2}+7 y^{2}-2 z^{2}+20 y z-20 z x-2 x y-36=0$ describe? Explain by reducing the quadratic form involved to a diagonal form. Express x, y, z in terms of the new coordinates u, v, w.

- $\mathbf{A}=\left[\begin{array}{ccc}7 & -1 & -10 \\ -1 & 7 & 10 \\ -10 & 10 & -2\end{array}\right]$
- $\operatorname{det}\left[\begin{array}{ccc}7-\lambda & -1 & -10 \\ -1 & 7-\lambda & 10 \\ -10 & 10-\lambda & -2\end{array}\right]=(6-\lambda) \operatorname{det}\left[\begin{array}{cc}8-\lambda & 10 \\ 20 & -2-\lambda\end{array}\right]$
- $=(6-\lambda)\left(\lambda^{2}-6 \lambda-216\right)$
- Eigen values: 6, 18 and -12
- 2 positive and 1 negative \Rightarrow elliptical cone or 1 -sheeted hyperboloid
- Eigen vectors: $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top},\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\top},\left[\begin{array}{lll}1 & -1 & 2\end{array}\right]^{\top}$
- Eigen vectors are already orthogonal. Normalize
- $\frac{1}{\sqrt{2}}\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top}, \frac{1}{\sqrt{3}}\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{\top}, \frac{1}{\sqrt{6}}\left[\begin{array}{lll}1 & -1 & 2\end{array}\right]^{\top}$
- $\mathbf{C}=\frac{1}{\sqrt{6}}\left[\begin{array}{ccc}\sqrt{3} & -\sqrt{2} & 1 \\ \sqrt{3} & \sqrt{2} & -1 \\ 0 & \sqrt{2} & 2\end{array}\right]$
- $\left[\begin{array}{l}\mathbf{x} \\ \mathbf{y} \\ \mathbf{z}\end{array}\right]=\mathbf{C}\left[\begin{array}{c}\mathbf{u} \\ \mathbf{v} \\ \mathbf{w}\end{array}\right]$
- $=\left[\frac{\sqrt{2} u}{2}-\frac{\sqrt{3} v}{3}+\frac{\sqrt{6} w}{6}, \frac{\sqrt{2} u}{2}+\frac{\sqrt{3} v}{3}-\frac{\sqrt{6} w}{6}, \frac{\sqrt{3} v}{3}+\frac{\sqrt{6} w}{3}\right]^{\top}$
- Substituting in $7 x^{2}-2 x y-20 x z+7 y^{2}+20 y z-2 z^{2}-36=0$ and simplifying, we get, $\frac{u^{2}}{6}+\frac{v^{2}}{2}-\frac{w^{2}}{3}=1$
- Therefore, it is a 1 -sheeted hyperboloid

Question 8

Let Y be a subspace of $\mathbb{K}^{n \times 1}$. Show that $\left(Y^{\perp}\right)^{\perp}=Y$.

- We need to prove that: (i) $Y \subseteq\left(Y^{\perp}\right)^{\perp}$ and (ii) $\left(Y^{\perp}\right)^{\perp} \subseteq Y$
- (i) $Y \subseteq\left(Y^{\perp}\right)^{\perp}$
- Suppose $\mathbf{x} \in Y$. We know $Y^{\perp}=\left\{\mathbf{y} \in \mathbb{K}^{n \times 1} \mid\langle\mathbf{x}, \mathbf{y}\rangle=0 \forall \mathbf{x} \in Y\right\}$
- So $\langle\mathbf{x}, \mathbf{y}\rangle=0 \forall \mathbf{y} \in Y^{\perp}$.
- Thus, be definition of $\left(Y^{\perp}\right)^{\perp}, \mathbf{x} \in Y$
- Hence $u \in\left(U^{\perp}\right)^{\perp}$
- (ii) $\left(Y^{\perp}\right)^{\perp} \subseteq Y$
- Let $\mathbf{x} \in\left(Y^{\perp}\right)^{\perp} \subseteq \mathbb{K}^{n \times 1}$
- By Projection Theorem, \mathbf{x} can be written as $\mathbf{x}=\mathbf{y}+\tilde{\mathbf{y}}$ where $\mathbf{y} \in Y$ and $\tilde{\mathbf{y}} \in Y^{\perp}$
- $\mathbf{x}-\mathbf{y}=\tilde{\mathbf{y}}$, so $\mathbf{x}-\mathbf{y} \in Y^{\perp}$.
- Also, we had, $\mathbf{x} \in\left(Y^{\perp}\right)^{\perp}$ and $\mathbf{y} \in Y \subseteq\left(U^{\perp}\right)^{\perp}$ (from part i)
- So $\mathbf{x}-\mathbf{y} \in\left(Y^{\perp}\right)^{\perp}$
- Or $\mathbf{x}-\mathbf{y} \in Y^{\perp} \cap\left(Y^{\perp}\right)^{\perp}$
- Hence $\mathbf{x}-\mathbf{y}=0$, so $\mathbf{x}=\mathbf{y} \in Y$

Question 9

Let \mathbf{A} be a self-adjoint matrix. If $\langle\mathbf{A} \mathbf{x}, \mathbf{x}\rangle=0$ for all $\mathbf{x} \in \mathbb{K}^{n \times 1}$, then show that $\mathbf{A}=\mathbf{O}$.

- By Spectral Theorem of Self-Adjoint Matrices, \mathbf{A} is self-adjoint $\Leftrightarrow \mathbf{A}$ is unitarily diagonalizable and all eigen values are real
- That is $\mathbf{A}=\mathbf{U D U}{ }^{*}$, where $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots \mathbf{u}_{n}\right]$ and \mathbf{u}_{i} are orthonormal
- Since $\langle\mathbf{A} \mathbf{x}, \mathbf{x}\rangle=0$ for all $\mathbf{x} \in \mathbb{K}^{n \times 1}$,

$$
\left\langle\mathbf{A} \mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle=\left\langle\lambda_{i} \mathbf{u}_{i}, \mathbf{u}_{i}\right\rangle=\overline{\lambda_{i}} \mathbf{u}_{i}^{*} \mathbf{u}_{i}=\lambda_{i}=0
$$

- Thus $\mathbf{D}=\mathbf{O} \Longrightarrow \mathbf{A}=\mathbf{0}$

Deduce that if $\left\|\mathbf{A}^{*} \mathbf{x}\right\|=\|\mathbf{A} \mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{K}^{n \times 1}$, then \mathbf{A} is a normal matrix

- $\left\|\mathbf{A}^{*} \mathbf{x}\right\|=\|\mathbf{A} \mathbf{x}\| \Rightarrow\left\langle\mathbf{A}^{*} \mathbf{x}, \mathbf{A}^{*} \mathbf{x}\right\rangle=\langle\mathbf{A} \mathbf{x}, \mathbf{A} \mathbf{x}\rangle$
- $\mathbf{x}^{*} \mathbf{A A}^{*} \mathbf{x}=\mathbf{x}^{*} \mathbf{A}^{*} \mathbf{A} \mathbf{x} \Rightarrow \mathbf{x}^{*}\left(\mathbf{A} \mathbf{A}^{*} \mathbf{x}-\mathbf{A}^{*} \mathbf{A x}\right)=0$
- $\left\langle\mathbf{x},\left(\mathbf{A A}^{*}-\mathbf{A}^{*} \mathbf{A}\right) \mathbf{x}\right\rangle=0$
- Check that $\mathbf{A A}^{*}-\mathbf{A}^{*} \mathbf{A}$ is self-adjoint
- Using the previous part, we get $\mathbf{A A}^{*}-\mathbf{A}^{*} \mathbf{A}=0$, or \mathbf{A} is normal

Deduce that if $\|\mathbf{A} \mathbf{x}\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{K}^{n \times 1}$, then \mathbf{A} is a unitary matrix.

- $\left\|\mathbf{A}^{*} \mathbf{x}\right\|=\|\mathbf{x}\| \Rightarrow\left\langle\mathbf{A}^{*} \mathbf{x}, \mathbf{A}^{*} \mathbf{x}\right\rangle=\langle\mathbf{x}, \mathbf{x}\rangle$
- $\mathbf{x}^{*} \mathbf{A A}^{*} \mathbf{x}=\mathbf{x}^{*} \mathbf{x} \Rightarrow \mathbf{x}^{*}\left(\mathbf{A A}^{*} \mathbf{x}-\mathbf{x}\right)=0$
- $\left\langle\mathbf{x},\left(\mathbf{A A}^{*}-\mathbf{I}\right) \mathbf{x}\right\rangle=0$
- $\left\langle\left(\mathbf{A A}^{*}-\mathbf{I}\right) \mathbf{x}, \mathbf{x}\right\rangle=\overline{0}=0$
- Check that $\mathbf{A A}^{*}-\mathbf{I}$ is self-adjoint
- Using the first part, we get $\mathbf{A A}^{*}-\mathbf{I}=0$, or \mathbf{A} is normal

Question 10 (i)

Let E be a nonempty subset of $\mathbb{K}^{n \times 1}$. If E is not closed, then show that there is $\mathbf{x} \in \mathbb{K}^{n \times 1}$ such that no best approximation to \mathbf{x} exists from E.

- Recall a set is closed if it contains all its limit points i.e. for all sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $a_{n} \in E, \lim _{n \rightarrow \infty} a_{n}=a$ and $a \in E$
- Now if E is not closed, there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ such that $a_{n} \in E$ but $\lim _{n \rightarrow \infty} a_{n}=a \notin E$
- Choose \mathbf{x} to be a and for contradiction assume that it has a best approximation y_{0}
- Since $a \notin E,\left\|a-y_{0}\right\|>0$
- Definition of limits, $\forall \epsilon>0, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N,\left\|a_{n}-a\right\|<\epsilon$
- Choose $\epsilon=\left\|a-y_{0}\right\|$, thus we have that $\exists N \in \mathbb{N}$ s.t. $\left\|a_{N}-a\right\|<\epsilon=\left\|a-y_{0}\right\|$
- This contradicts the assumption that y_{0} is the best approximation
- Thus, no best approximation of a exists

Question 10 (ii)

Let E be a nonempty subset of $\mathbb{K}^{n \times 1}$. If E is convex, then show that for every $\mathbf{x} \in \mathbb{K}^{n \times 1}$, there is at most one best approximation to \mathbf{x} from E.

- For contradiction, suppose some point \mathbf{x} has more than one best approximation, say y_{1} and $y_{2}\left(y_{1} \neq y_{2}\right)$. Thus $\left\|x-y_{1}\right\|=\left\|x-y_{2}\right\|(=d)$
- Since E is convex, $\frac{y_{1}+y_{2}}{2} \in E$
- Now $\left\|x-\frac{y_{1}+y_{2}}{2}\right\|<\frac{1}{2}\left\|x-y_{1}\right\|+\frac{1}{2}\left\|x-y_{2}\right\|<d$
- This contradicts the assumption at y_{1} and y_{2} are the best approximations
- Thus there must be at most one best approximation to \mathbf{x}

Question 11

Find $\mathbf{x}:=\left[x_{1}, x_{2}\right]^{\top} \in \mathbb{R}^{2 \times 1}$ such that the straight line $t=x_{1}+x_{2} s$ fits the data points $(-1,2),(0,0),(1,-3)$ and $(2,-5)$ best in the 'least squares' sense.

- $\mathbf{A}=\left[\begin{array}{cc}1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], \mathbf{b}=\left[\begin{array}{c}2 \\ 0 \\ -3 \\ -5\end{array}\right]$
- $\mathcal{C}(\mathbf{A})$ is the span of $\mathbf{c}_{1}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{\top}$ and $\mathbf{c}_{2}=\left[\begin{array}{llll}-1 & 0 & 1 & 2\end{array}\right]^{\top}$
- GSOP gives $\mathbf{u}_{1}=\frac{1}{2}\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{\top}, \mathbf{u}_{2}=\frac{1}{2 \sqrt{5}}\left[\begin{array}{llll}-3 & 1 & 1 & 3\end{array}\right]^{\top}$
- Best approximation to \mathbf{b} from $\mathcal{C}(\mathbf{A})$ is $\mathbf{a}=\left\langle\mathbf{u}_{1}, \mathbf{b}\right\rangle \mathbf{u}_{1}+\left\langle\mathbf{u}_{2}, \mathbf{b}\right\rangle \mathbf{u}_{2}$
- $\mathbf{a}=-3 \mathbf{u}_{1}-\frac{12}{\sqrt{5}} \mathbf{u}_{2}=\left[\begin{array}{llll}2.1 & -0.3 & -2.7 & -5.1\end{array}\right]$
- Solve $\mathbf{A x}=\mathbf{a}$
- $x_{1}-x_{2}=2.1, x_{1}=-0.3, x_{1}+x_{2}=-2.7, x_{1}+2 x_{2}=-5.1$
- $x_{1}=-0.3, x_{2}=-2.4$ or $\mathbf{x}=\left[\begin{array}{l}-0.3 \\ -2.4\end{array}\right]$

Question 12

Let $Q\left(x_{1}, \ldots, x_{n}\right):=\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j k} x_{k} \bar{x}_{j}$, where $\alpha_{j k} \in \mathbb{C}$, be a complex quadratic form. If the quadratic form $Q\left(x_{1}, \ldots, x_{n}\right)$ takes values in \mathbb{R} for all $\mathbf{x}:=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\top} \in \mathbb{C}^{n \times 1}$, then show that there is a unique self-adjoint matrix \mathbf{A} such that

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}^{*} \mathbf{A} \mathbf{x} \quad \text { for all } \mathbf{x}:=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]^{\top} \in \mathbb{C}^{n \times 1}
$$

- $Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j k} x_{k} \bar{x}_{j}=\sum_{j=1}^{n}\left(\sum_{k=1}^{n} \alpha_{j k} x_{k}\right) \bar{x}_{j}$

$$
\boldsymbol{0}=\mathbf{x}^{*}\left[\begin{array}{c}
\sum_{k=1}^{n} \alpha_{1 k} x_{k} \\
\vdots \\
\sum_{k=1}^{n} \alpha_{j k} x_{k} \\
\vdots
\end{array}\right]=\mathbf{x}^{*}\left[\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n n}
\end{array}\right] \mathbf{x}
$$

If the quadratic form $Q\left(x_{1}, \ldots, x_{n}\right)$ takes values in \mathbb{R} for all
$\mathbf{x}:=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\top} \in \mathbb{C}^{n \times 1}$, then show that there is a unique self-adjoint matrix \mathbf{A} such that

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}^{*} \mathbf{A} \mathbf{x} \quad \text { for all } \mathbf{x}:=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]^{\top} \in \mathbb{C}^{n \times 1}
$$

- $\mathbf{A}=\left[\begin{array}{ccc}\alpha_{11} & \cdots & \alpha_{1 n} \\ \vdots & \ddots & \vdots \\ \alpha_{n 1} & \cdots & \alpha_{n n}\end{array}\right]$ is one possible \mathbf{A}
- Now, Q only takes real values, so $Q\left(x_{1}, \ldots, x_{n}\right)=\overline{Q\left(x_{1}, \ldots, x_{n}\right)}$
- $\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j k} x_{k} \bar{x}_{j}=\sum_{j=1}^{n} \sum_{k=1}^{n} \overline{\alpha_{j k}} \overline{x_{k}} x_{j}$
- Changing index variables on the RHS,
- $\sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{j k} x_{k} \bar{x}_{j}=\sum_{k=1}^{n} \sum_{j=1}^{n} \overline{\alpha_{k j}} \overline{x_{j}} x_{k}$
- Thus, we can have $\alpha_{j k}=\overline{\alpha_{k j}}$ which combined with the \mathbf{A} above gives us a self-adjoint matrix
- It remains to be shown that \mathbf{A} is unique
- For contradiction, let \mathbf{A} and \mathbf{B} be two self-adjoint matrices representing Q
- $\mathbf{x}^{*} \mathbf{A} \mathbf{x}=\mathbf{x}^{*} \mathbf{B} \mathbf{x} \Longrightarrow\langle(\mathbf{A}-\mathbf{B}) \mathbf{x}, \mathbf{x}\rangle=0 \forall \mathbf{x} \in \mathbb{C}^{n \times 1}$
- Noting that $\mathbf{A}-\mathbf{B}$ is self adjoint and using 7.9 gives us $\mathbf{A}=\mathbf{B}$

