MA 106 : Linear Algebra Tutorial 5

Soumya Chatterjee
IIT Bombay
$7^{\text {th }}$ April 2021

Question 1(i)

Find all eigenvalues, and their geometric as well as algebraic multiplicities of the following matrices. Are they diagonalizable? If so, find invertible \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A P}$ is a diagonal matrix.
$\mathbf{A}:=\left[\begin{array}{cc}5 & -1 \\ 1 & 3\end{array}\right]$

- $p_{\mathbf{A}}(t)=\operatorname{det}\left[\begin{array}{cc}5-t & -1 \\ 1 & 3-t\end{array}\right]$
- $=(5-t)(3-t)+1=t^{2}-8 t+16$
- $=(t-4)^{2}$
- $\mathbf{A}-\mathbf{4} \mathbf{I}=\operatorname{det}\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right] \rightarrow \operatorname{rank}(\mathbf{A}-4 \mathbf{I})=1$
- Eigenvalue: 4 with algebraic multiplicity 2 and geometric multiplicity $=\operatorname{nullity}(\mathbf{A}-\mathbf{4 I})=2-1=1$
- Not diagonalizable

Question 1(ii)

$\mathbf{A}:=\left[\begin{array}{cccc}3 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 / 2\end{array}\right]$

- $p_{\mathbf{A}}(t)=\operatorname{det}\left[\begin{array}{cccc}3-t & 2 & 1 & 0 \\ 0 & 1-t & 0 & 1 \\ 0 & 2 & -1-t & 0 \\ 0 & 0 & 0 & 1 / 2-t\end{array}\right]$
- $=(3-t)\left[\begin{array}{ccc}1-t & 0 & 1 \\ 2 & -1-t & 0 \\ 0 & 0 & 1 / 2-t\end{array}\right]$
- $=(3-t)(1 / 2-t)\left[\begin{array}{cc}1-t & 0 \\ 2 & -1-t\end{array}\right]=(3-t)(1 / 2-t)(1-t)(-1-t)$
- Eigenvalues: $\{3,1 / 2,1,-1\}$ all with algebraic and geometric multiplicity 1
- Diagonalizable
- $\mathbf{A}=\left[\begin{array}{cccc}3 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 / 2\end{array}\right]$ has eigenvalues: $\{3,1 / 2,1,-1\}$
- For $\lambda=3$,

$$
\begin{aligned}
\text { - } & \mathbf{A}-3 \mathbf{I}=\left[\begin{array}{cccc}
0 & 2 & 1 & 0 \\
0 & -2 & 0 & 1 \\
0 & 2 & -4 & 0 \\
0 & 0 & 0 & -5 / 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -5 & 0 \\
0 & 0 & 0 & -5 / 2
\end{array}\right] \rightarrow \\
& {\left[\begin{array}{cccc}
0 & 2 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & -5 / 2 \\
0 & 0 & 0 & 0
\end{array}\right] . \text { Basic solution }=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{\top} }
\end{aligned}
$$

- Similarly, check that for $\lambda=1 / 2,\left[\begin{array}{llll}8 / 3 & -2 & -8 / 3 & 1\end{array}\right]^{\top}$;
$\lambda=1,\left[\begin{array}{llll}-3 / 2 & 1 & 1 & 0\end{array}\right]^{\top} ; \lambda=-1,\left[\begin{array}{cccc}-1 / 4 & 0 & 1 & 0\end{array}\right]^{\top}$
- $\mathbf{P}=\left[\begin{array}{cccc}1 & 8 / 3 & -3 / 2 & -1 / 4 \\ 0 & -2 & 1 & 0 \\ 0 & -8 / 3 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]$

Question 1(iii)

$$
\mathbf{A}:=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

- $p_{\mathbf{A}}(t)=\operatorname{det}\left[\begin{array}{ccc}2-t & 1 & 0 \\ 0 & 2-t & 1 \\ 0 & 0 & 2-t\end{array}\right]=(2-t)^{3}$
- $\mathbf{A}-\mathbf{2} \mathbf{I}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] \Rightarrow \operatorname{rank}(\mathbf{A}-\mathbf{2} \mathbf{I})=2$
- Eigenvalue: 4 with algebraic multiplicity 2 and geometric multiplicity $=\operatorname{nullity}(\mathbf{A}-\mathbf{2 I})=3-2=1$
- Not diagonalizable

Question 2

Let $\mathbf{A}:=\left[\begin{array}{lll}2 & a & b \\ 0 & 1 & c \\ 0 & 0 & 2\end{array}\right]$. Find a necessary and sufficient condition on a, b, c for \mathbf{A} to be diagonalizable.

- $p_{\mathbf{A}}(t)=\operatorname{det}\left[\begin{array}{ccc}2-t & a & b \\ 0 & 1-t & c \\ 0 & 0 & 2-t\end{array}\right]=(2-t)^{2}(1-t)$
- For \mathbf{A} to be diagonalizable, we need the algebraic and geometric multiplicities of the eigenvalues to match
- For $\lambda=1$, this is always true (why?).
- For $\lambda=2$, we need its geometric multiplicity to be 2 , or nullity $(\mathbf{A}-2 \mathbf{I})=2$, or $\operatorname{rank}(\mathbf{A}-2 \mathbf{I})=1$
- $\mathbf{A}-2 \mathbf{I}=\left[\begin{array}{ccc}0 & a & b \\ 0 & -1 & c \\ 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}0 & 1 & -c \\ 0 & a & b \\ 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc}0 & 1 & -c \\ 0 & 0 & b+a c \\ 0 & 0 & 0\end{array}\right]$
- So, we need $b+a c=0$
- $\mathbf{A}-\mathbf{I}=\left[\begin{array}{lll}1 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & a & b \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
- $\operatorname{rank}(\mathbf{A}-\mathbf{I})=2 \Rightarrow \operatorname{nullity}(\mathbf{A}-\mathbf{I})=1 \Rightarrow \lambda=1$ has geometric multiplicity 1

Question 4

Let $\lambda \in \mathbb{K}$. Show that λ is an eigenvalue of \mathbf{A} if and only if $\bar{\lambda}$ is an eigenvalue of \mathbf{A}^{*}, but their eigenvectors can be very different

- $\operatorname{det} \mathbf{A}^{*}=\operatorname{det} \overline{\mathbf{A}}^{\top}=\operatorname{det} \overline{\mathbf{A}}=\overline{\operatorname{det} \mathbf{A}}$ (Prove by induction)
- Outline of proof:
- Base case: $\operatorname{det}[x]^{*}=\operatorname{det}[\bar{x}]=\bar{x}=\overline{\operatorname{det}[x]}$
- Let $\mathbf{B}=\overline{\mathbf{A}}$ and let $N_{i j}$ be the minors of \mathbf{A}
- $\operatorname{det} \mathbf{B}=\sum_{n}(-1)^{1+i} b_{1 i} N_{1 i}$
- $=\sum_{n}(-1)^{1+i} \overline{{ }_{1 i}} \overline{M_{1 i}}$ (minors are determinants of a smaller size)
- $=\sum_{n}(-1)^{1+i} \overline{a_{1 i} M_{1 i}}=\overline{\sum_{n}(-1)^{1+i} a_{1 i} M_{1 i}}=\overline{\operatorname{det} \mathbf{A}}$
- Thus we have $\operatorname{det} \mathbf{A}^{*}=\overline{\operatorname{det} \mathbf{A}}$
- We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\overline{\overline{\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})}}=\overline{\operatorname{det}\left((\mathbf{A}-\lambda \mathbf{I})^{*}\right)}$
$=\overline{\operatorname{det}\left(\mathbf{A}^{*}-\bar{\lambda} \mathbf{I}\right)}$
- Thus $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 \Longleftrightarrow \operatorname{det}\left(\mathbf{A}^{*}-\bar{\lambda} \mathbf{I}\right)=0$

Question 5

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Show that 0 is an eigenvalue of \mathbf{A} if and only if 0 is an eigenvalue of $\mathbf{A}^{*} \mathbf{A}$, and its geometric multiplicity is the same.

- (\Longrightarrow)
- 0 is an eigenvalue of \mathbf{A}
- $\mathbf{A x}=0 \Rightarrow \mathbf{A}^{*} \mathbf{A x}=0$
- 0 is an eigenvalue of $\mathbf{A}^{*} \mathbf{A}$
- (\Longleftarrow)
- 0 is an eigenvalue of $\mathbf{A}^{*} \mathbf{A}$
- $\mathbf{A}^{*} \mathbf{A x}=0 \Rightarrow \mathbf{x}^{*} \mathbf{A}^{*} \mathbf{A x}=0$
- $(\mathbf{A x})^{*} \mathbf{A x}=0 \Rightarrow \mathbf{A x}=0$ Why?
- 0 is an eigenvalue of \mathbf{A}
- Thus we have shown that 0 is an eigenvalue of \mathbf{A} if and only if 0 is an eigenvalue of $\mathbf{A}^{*} \mathbf{A}$

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Show that 0 is an eigenvalue of \mathbf{A} if and only if 0 is an eigenvalue of $\mathbf{A}^{*} \mathbf{A}$, and its geometric multiplicity is the same.

- Geometric multiplicity $=\operatorname{dim} \mathcal{N}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{dim} \mathcal{N}(\mathbf{A})($ for $\lambda=0)$
- Thus to prove equal geometric multiplicity of 0 , we need to show that $\operatorname{dim} \mathcal{N}(\mathbf{A})=\operatorname{dim} \mathcal{N}\left(\mathbf{A}^{*} \mathbf{A}\right)$
- We instead prove a stronger statement: $\mathcal{N}(\mathbf{A})=\mathcal{N}\left(\mathbf{A}^{*} \mathbf{A}\right)$
- $\mathbf{x} \in \mathcal{N}(\mathbf{A}) \Leftrightarrow \mathbf{A} \mathbf{x}=0 \Longleftrightarrow \mathbf{A}^{*} \mathbf{A} \mathbf{x}=0 \Leftrightarrow \mathbf{x} \in \mathcal{N}\left(\mathbf{A}^{*} \mathbf{A}\right)$
- Above statement follows from the previous part
- $\mathbf{x} \in \mathcal{N}(\mathbf{A}) \Leftrightarrow \mathbf{x} \in \mathcal{N}\left(\mathbf{A}^{*} \mathbf{A}\right) \Longrightarrow \mathcal{N}(\mathbf{A})=\mathcal{N}\left(\mathbf{A}^{*} \mathbf{A}\right)$

Deduce rank $\mathbf{A}^{*} \mathbf{A}=\operatorname{rank} \mathbf{A}$

- We have shown that $\mathcal{N}(\mathbf{A})=\mathcal{N}\left(\mathbf{A}^{*} \mathbf{A}\right)$
- $\operatorname{dim} \mathcal{N}(\mathbf{A})=\operatorname{dim} \mathcal{N}\left(\mathbf{A}^{*} \mathbf{A}\right) \Rightarrow \operatorname{nullity}(\mathbf{A})=\operatorname{nullity}\left(\mathbf{A}^{*} \mathbf{A}\right)$
- By rank-nullity theorem, rank $\mathbf{A}^{*} \mathbf{A}=$ rank \mathbf{A} follows (both matrices have the same number of columns)

Question 7

A square matrix $\mathbf{A}:=\left[a_{j k}\right]$ is called strictly diagonally dominant if $\left|a_{j j}\right|>\sum_{k \neq j}\left|a_{j k}\right|$ for each $j=1, \ldots, n$. If \mathbf{A} strictly diagonally dominant, show that \mathbf{A} is invertible.

- Showing \mathbf{A} is invertible is equivalent to showing nullity $\mathbf{A}=0$
- $\operatorname{Or} \mathbf{A x}=0$ does not have any non-zero solution or 0 is not an eigenvalue of \mathbf{A}

Recall: Gerschgorin Theorem

Every eigenvalue of $\mathbf{A} \in \mathbb{K}^{n \times n}$ belongs in one of its Gerschgorin disks.
If $r_{j}:=\sum_{k \neq j}\left|a_{j k}\right|$, the Gerschgorin disks are given by
$D\left(a_{j j}, r_{j}\right):=\left\{a \in \mathbb{K}:\left|a-a_{j j}\right| \leq r_{j}\right\}$

- Since for strictly diagonally dominant matrix $\mathbf{A},\left|a_{j j}\right|>r_{j}$, by Gerschgorin Theorem, none of the disks can contain the origin (distance of center from origin $>$ radius)
- Thus 0 cannot be a eigenvalue of \mathbf{A}

Question 8

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Define $\alpha_{2}:=\max \{\|\mathbf{A x}\|:\|\mathbf{x}\|=1\}$,
$\alpha_{\infty}:=\max \left\{\sum_{k=1}^{n}\left|a_{j k}\right|: j=1, \ldots, n\right\}$ and
$\alpha_{1}:=\max \left\{\sum_{j=1}^{n}\left|a_{j k}\right|: k=1, \ldots, n\right\}$, where $\mathbf{A}:=\left[a_{j k}\right]$.
Show that $|\lambda| \leq \min \left\{\alpha_{2}, \alpha_{\infty}, \alpha_{1}\right\}$ for every eigenvalue λ.

- $|\lambda| \leq \min \left\{\alpha_{2}, \alpha_{\infty}, \alpha_{1}\right\} \Longleftrightarrow|\lambda| \leq \alpha_{2}$ and $|\lambda| \leq \alpha_{\infty}$ and $|\lambda| \leq \alpha_{2}$
- First we show that $|\lambda| \leq \alpha_{2}$
- Let $\lambda_{\max }$ be the eigenvalue with maximum absolute value i.e.

$$
\left|\lambda_{\max }\right| \geq\left|\lambda_{i}\right| \forall i \in\{1,2 \ldots, n\}
$$

- Thus there exists a vector \mathbf{x} with $\|\mathbf{x}\|=1$ such that $\mathbf{A} \mathbf{x}=\lambda_{\max } \mathbf{x}$
- $\|\mathbf{A} \mathbf{x}\|=\left\|\lambda_{\max } \mathbf{x}\right\|=\left|\lambda_{\text {max }}\right|\|\mathbf{x}\|=\left|\lambda_{\text {max }}\right|$
- Which gives us $\alpha_{2}=\max \{\|\mathbf{A x}\|:\|\mathbf{x}\|=1\} \geq\left|\lambda_{\max }\right|$ (Why?)
- $\left|\lambda_{\max }\right| \leq \alpha_{2} \Rightarrow\left|\lambda_{i}\right| \leq \alpha_{2}$ for all i (Why?)
- Next we show that $|\lambda| \leq \alpha_{\infty}$
- Let j^{\prime} be the value of j at which $\sum_{k}\left|a_{j k}\right|$ attains it maximum
- By Gershgorin Theorem, $\left|\lambda-a_{j^{\prime} j^{\prime}}\right| \leq \sum_{k, k \neq j^{\prime}}\left|a_{j^{\prime} k}\right|$
- $|\lambda|-\left|a_{j^{\prime} j^{\prime}}\right| \leq\left|\lambda-a_{j^{\prime} j^{\prime}}\right| \leq \sum_{k, k \neq j^{\prime}}\left|a_{j^{\prime} k}\right|$ (Triangle Inequality)
- $|\lambda| \leq \sum_{k, k \neq j^{\prime}}\left|a_{j^{\prime} k}\right|+\left|a_{j^{\prime} j^{\prime}}\right|=\alpha_{\infty}$

Let $\mathbf{A} \in \mathbb{K}^{n \times n}$. Define $\alpha_{2}:=\max \{\|\mathbf{A x}\|:\|\mathbf{x}\|=1\}$, $\alpha_{\infty}:=\max \left\{\sum_{k=1}^{n}\left|a_{j k}\right|: j=1, \ldots, n\right\}$ and $\alpha_{1}:=\max \left\{\sum_{j=1}^{n}\left|a_{j k}\right|: k=1, \ldots, n\right\}$, where $\mathbf{A}:=\left[a_{j k}\right]$. Show that $|\lambda| \leq \min \left\{\alpha_{2}, \alpha_{\infty}, \alpha_{1}\right\}$ for every eigenvalue λ.

- Finally, we show that $|\lambda| \leq \alpha_{1}$
- Observe that $|\lambda| \leq \alpha_{\infty}$ is the maximum row sum and $|\lambda| \leq \alpha_{1}$ is the maximum column sum
- If we show that \mathbf{A} and \mathbf{A}^{\top} have the same eigenvalues, we can apply Gershgorin Theorem as in the previous part and be done
- $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\operatorname{det}\left((\mathbf{A}-\lambda \mathbf{I})^{\top}\right)=\operatorname{det}\left(\mathbf{A}^{\top}-\lambda \mathbf{I}\right)$
- $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 \Leftrightarrow \operatorname{det}\left(\mathbf{A}^{\top}-\lambda \mathbf{I}\right)=0$ or both \mathbf{A} and \mathbf{A}^{\top} have the same eigenvalues
- Can you complete the proof?

Question 9

Let $\mathbf{x}, \mathbf{y} \in \mathbb{K}^{n \times 1}$. Prove $\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}=2\|\mathbf{x}\|^{2}+2\|\mathbf{y}\|^{2}$.

$$
\begin{aligned}
& \text { - }\|\mathbf{x}+\mathbf{y}\|^{2}+\|\mathbf{x}-\mathbf{y}\|^{2}=(\mathbf{x}+\mathbf{y})^{*}(\mathbf{x}+\mathbf{y})+(\mathbf{x}-\mathbf{y})^{*}(\mathbf{x}-\mathbf{y}) \\
& \text { - }=\left(\mathbf{x}^{*}+\mathbf{y}^{*}\right)(\mathbf{x}+\mathbf{y})+\left(\mathbf{x}^{*}-\mathbf{y}^{*}\right)(\mathbf{x}-\mathbf{y}) \\
& \text { - }=\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}+\mathbf{x}^{*} \mathbf{y}+\mathbf{y}^{*} \mathbf{x}+\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}-\mathbf{x}^{*} \mathbf{y}-\mathbf{y}^{*} \mathbf{x} \\
& \text { - }=2 \mathbf{x}^{*} \mathbf{x}+2 \mathbf{y}^{*} \mathbf{y}=2\|\mathbf{x}\|^{2}+2\|\mathbf{y}\|^{2}
\end{aligned}
$$

If \mathbf{x} and \mathbf{y} are nonzero, prove $\|\mathbf{x}-\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2}-2\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$, where $\theta \in[0, \pi]$ is defined to be $\cos ^{-1}(\Re\langle\mathbf{x}, \mathbf{y}\rangle /\|\mathbf{x}\|\|\mathbf{y}\|)$.

$$
\begin{aligned}
& \text { - }\|x-y\|^{2}=(x-y)^{*}(x-y)=x^{*} x+y^{*} y-x^{*} y-y^{*} x \\
& \text { - }=\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}-\langle\mathbf{x}, \mathbf{y}\rangle-\langle\mathbf{y}, \mathbf{x}\rangle=\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}-\langle\mathbf{x}, \mathbf{y}\rangle-\overline{\langle\mathbf{x}, \mathbf{y}\rangle} \\
& \text { - }=\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}-2 \Re\left(\mathbf{x}^{*} \mathbf{y}\right)=\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}-2 \Re\langle\mathbf{x}, \mathbf{y}\rangle \\
& =\mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}-2\|\mathbf{x}\|\|\mathbf{y}\| \Re\langle\mathbf{x}, \mathbf{y}\rangle /\|\mathbf{x}\|\|\mathbf{y}\| \\
& \text { - Now, } \frac{|\Re\langle\mathbf{x}, \mathbf{y}\rangle|}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq \frac{|\mathbf{x}, \mathbf{y}\rangle \mid}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1 \text { (Schwarz inequality) } \\
& \text { - } \Rightarrow-1 \leq \frac{\Re\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1 \text {. So, we can conclude that } \theta \in[0, \pi] \text { exist }
\end{aligned}
$$

Question 3 and 6

- See the OneNote notebook in MS Teams

Tutorial 6 Question 1

Orthonormalize the following ordered subsets of $\mathbb{K}^{4 \times 1}$
(i) $\left(\mathbf{e}_{1}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right)$

- $\mathbf{y}_{1}=\mathbf{e}_{1}$
$-\mathbf{y}_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}+\mathbf{e}_{2}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}=\mathbf{e}_{2}$
$-\mathbf{y}_{3}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}-\frac{\left\langle\mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right\rangle}{\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle} \mathbf{e}_{2}=\mathbf{e}_{3}$
$-\mathbf{y}_{4}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}-\frac{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right\rangle}{\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle} \mathbf{e}_{1}-\frac{\left\langle\mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right\rangle}{\left\langle\mathbf{e}_{2}, \mathbf{e}_{2}\right\rangle} \mathbf{e}_{2}-$ $\frac{\left\langle\mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}\right\rangle}{\left\langle\mathbf{e}_{3}, \mathbf{e}_{3}\right\rangle} \mathbf{e}_{3}=\mathbf{e}_{4}$
(ii) $\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4},-\mathbf{e}_{1}+\mathbf{e}_{2},-\mathbf{e}_{1}+\mathbf{e}_{3},-\mathbf{e}_{1}+\mathbf{e}_{4}\right)$
- $\mathbf{y}_{1}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}$
- $\mathbf{y}_{2}=-\mathbf{e}_{1}+\mathbf{e}_{2}-\frac{\left\langle\mathbf{y}_{1},-\mathbf{e}_{1}+\mathbf{e}_{2}\right\rangle}{\left\langle\mathbf{y}_{1}, \mathbf{y}_{1}\right\rangle} \mathbf{y}_{1}=-\mathbf{e}_{1}+\mathbf{e}_{2}$
- $\mathbf{y}_{3}=-\mathbf{e}_{1}+\mathbf{e}_{3}-0 \cdot \mathbf{y}_{1}-\frac{\left\langle-\mathbf{e}_{1}+\mathbf{e}_{3},-\mathbf{e}_{1}+\mathbf{e}_{2}\right\rangle}{\left\langle-\mathbf{e}_{1}+\mathbf{e}_{2},-\mathbf{e}_{1}+\mathbf{e}_{2}\right\rangle}\left(-\mathbf{e}_{1}+\mathbf{e}_{2}\right)=$ $-\mathbf{e}_{1}+\mathbf{e}_{3}-\frac{-\mathbf{e}_{1}+\mathbf{e}_{2}}{2}=-\frac{1}{2} \mathbf{e}_{1}-\frac{1}{2} \mathbf{e}_{2}+\mathbf{e}_{3}$
$-\mathbf{y}_{4}=-\mathbf{e}_{1}+\mathbf{e}_{4}-0 \cdot \mathbf{y}_{1}-\frac{\left\langle-\mathbf{e}_{1}+\mathbf{e}_{4}, \mathbf{y}_{2}\right\rangle}{\left\langle\mathbf{y}_{2}, \mathbf{y}_{2}\right\rangle} \mathbf{y}_{2}-\frac{\left\langle-\mathbf{e}_{1}+\mathbf{e}_{4}, \mathbf{y}_{3}\right\rangle}{\left\langle\mathbf{y}_{3}, \mathbf{y}_{3}\right\rangle} \mathbf{y}_{3}=$ $-\mathbf{e}_{1}+\mathbf{e}_{4}-\frac{1}{2} \mathbf{y}_{2}-\frac{1 / 2}{3 / 2} \mathbf{y}_{3}=-\frac{1}{3} \mathbf{e}_{1}-\frac{1}{3} \mathbf{e}_{2}-\frac{1}{3} \mathbf{e}_{3}+\mathbf{e}_{4}$
$-\left(\frac{\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}+\mathbf{e}_{4}}{2}, \frac{-\mathbf{e}_{1}+\mathbf{e}_{2}}{\sqrt{2}},-\frac{\sqrt{3}}{2 \sqrt{2}} \mathbf{e}_{1}-\frac{\sqrt{3}}{2 \sqrt{2}} \mathbf{e}_{2}+\frac{\sqrt{3}}{\sqrt{2}} \mathbf{e}_{3},-\frac{\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}}{2 \sqrt{3}}+\frac{\sqrt{3}}{2} \mathbf{e}_{4}\right)$

Tutorial 6 Question 2

Use the Gram-Schmidt Orthogonalization Process to orthonormalize the ordered subset

$$
\left(\left[\begin{array}{llll}
1 & -1 & 2 & 0
\end{array}\right]^{\top},\left[\begin{array}{llll}
1 & 1 & 2 & 0
\end{array}\right]^{\top},\left[\begin{array}{llll}
3 & 0 & 0 & 1
\end{array}\right]^{\top}\right)
$$

and obtain an ordered orthonormal set $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$.

- $\mathbf{y}_{1}=\left[\begin{array}{llll}1 & -1 & 2 & 0\end{array}\right]^{\top}$
- $\mathbf{y}_{2}=\left[\begin{array}{llll}1 & 1 & 2 & 0\end{array}\right]^{\top}-\frac{4}{6}\left[\begin{array}{llll}1 & -1 & 2 & 0\end{array}\right]^{\top}=\left[\begin{array}{llll}\frac{1}{3} & \frac{5}{3} & \frac{2}{3} & 0\end{array}\right]^{\top}$
- $\mathbf{y}_{3}=\left[\begin{array}{llll}3 & 0 & 0 & 1\end{array}\right]^{\top}-\frac{3}{6}\left[\begin{array}{llll}1 & -1 & 2 & 0\end{array}\right]^{\top}-\frac{1}{10 / 3}\left[\begin{array}{llll}\frac{1}{3} & \frac{5}{3} & \frac{2}{3} & 0\end{array}\right]^{\top}=$ $\left[\begin{array}{llll}\frac{12}{5} & 0 & -\frac{6}{5} & 1\end{array}\right]^{\top}$
- $\mathbf{u}_{1}=\frac{\mathbf{y}_{1}}{\left\|\mathbf{y}_{1}\right\|}=\left[\begin{array}{llll}\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & 0\end{array}\right]^{\top}$
- $\mathbf{u}_{2}=\frac{\mathbf{y}_{2}}{\left\|\mathbf{y}_{2}\right\|}=\left[\begin{array}{llll}\frac{\sqrt{30}}{30} & \frac{\sqrt{30}}{6} & \frac{\sqrt{30}}{15} & 0\end{array}\right]^{\top}$
- $\mathbf{u}_{3}=\frac{\mathbf{y}_{3}}{\left\|\mathbf{y}_{3}\right\|}=\left[\begin{array}{lllll}\frac{12 \sqrt{205}}{205} & 0 & -\frac{6 \sqrt{205}}{205} & \frac{\sqrt{205}}{41}\end{array}\right]^{\top}$

Find \mathbf{u}_{4} such that $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right)$ is an ordered orthonormal basis for $\mathbb{K}^{4 \times 1}$

- We want to \mathbf{u}_{4} such that $\left\langle\mathbf{u}_{1}, \mathbf{u}_{4}\right\rangle=\left\langle\mathbf{u}_{3}, \mathbf{u}_{4}\right\rangle=\left\langle\mathbf{u}_{3}, \mathbf{u}_{4}\right\rangle=0$
- Find the basic solution of (or directly use \mathbf{y}_{i} instead of \mathbf{u}_{1}),

$$
\left[\begin{array}{cccc}
\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & 0 \\
\frac{\sqrt{30}}{30} & \frac{\sqrt{30}}{6} & \frac{\sqrt{30}}{15} & 0 \\
\frac{12 \sqrt{205}}{205} & 0 & -\frac{6 \sqrt{205}}{205} & \frac{\sqrt{205}}{41}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- It turns out to be $\mathbf{y}_{4}=\left[\begin{array}{llll}-\frac{1}{3} & 0 & \frac{1}{6} & 1\end{array}\right]^{\top}$
- $\mathbf{u}_{4}=\left[\begin{array}{llll}-\frac{2}{\sqrt{41}} & 0 & \frac{1}{\sqrt{41}} & \frac{6}{\sqrt{41}}\end{array}\right]^{\top}$

Express the vector $\mathbf{x}=\left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]^{\top}$ as a linear combination of these four basis vectors.

- $\mathbf{u}_{1}=\left[\begin{array}{llll}\frac{\sqrt{6}}{6} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & 0\end{array}\right]^{\top}$
- $\mathbf{u}_{2}=\left[\begin{array}{llll}\frac{\sqrt{30}}{30} & \frac{\sqrt{30}}{6} & \frac{\sqrt{30}}{15} & 0\end{array}\right]^{\top}$
- $\mathbf{u}_{3}=\left[\begin{array}{lllll}\frac{12 \sqrt{205}}{205} & 0 & -\frac{6 \sqrt{205}}{205} & \frac{\sqrt{205}}{41}\end{array}\right]^{\top}$
- $\mathbf{u}_{4}=\left[\begin{array}{llll}-\frac{2 \sqrt{41}}{41} & 0 & \frac{\sqrt{41}}{41} & \frac{6 \sqrt{41}}{41}\end{array}\right]^{\top}$
- $\mathbf{x}=P_{\mathbf{u}_{1}}(\mathbf{x})+P_{\mathbf{u}_{2}}(\mathbf{x})+P_{\mathbf{u}_{3}}(\mathbf{x})+P_{\mathbf{u}_{4}}(\mathbf{x})$
- $\mathbf{x}=\left\langle\mathbf{u}_{1}, \mathbf{x}\right\rangle \mathbf{u}_{1}+\left\langle\mathbf{u}_{2}, \mathbf{x}\right\rangle \mathbf{u}_{2}+\left\langle\mathbf{u}_{3}, \mathbf{x}\right\rangle \mathbf{u}_{3}+\left\langle\mathbf{u}_{4}, \mathbf{x}\right\rangle \mathbf{u}_{4}(\langle\mathbf{u}, \mathbf{u}\rangle=1)$
- $\mathbf{x}=\frac{2 \sqrt{6}}{3} \mathbf{u}_{1}-\frac{1 \sqrt{30}}{15} \mathbf{u}_{2}+\frac{\sqrt{205}}{205} \mathbf{u}_{3}-\frac{7 \sqrt{41}}{41} \mathbf{u}_{4}$

