# MA 106 : Linear Algebra Tutorial 3 

Soumya Chatterjee<br>IIT Bombay<br>$24^{\text {th }}$ March 2021

## Question 6

Prove that $\operatorname{det}\left[\begin{array}{lll}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right]=(b-a)(c-a)(c-b)$

- $\operatorname{det}\left[\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right]=\operatorname{det}\left[\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right]\left(\right.$ Since $\left.\operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{A}^{\top}\right)$
- $=\operatorname{det}\left[\begin{array}{ccc}1 & a & a^{2} \\ 0 & b-a & b^{2}-a^{2} \\ 0 & c-a & c^{2}-a^{2}\end{array}\right]$ (Addition of multiple of a row to another)
$0=(b-a)(c-a) \operatorname{det}\left[\begin{array}{ccc}1 & a & a^{2} \\ 0 & 1 & b+a \\ 0 & 1 & c+a\end{array}\right]$ (Why?)
$0=(b-a)(c-a) \operatorname{det}\left[\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 1 \\ a^{2} & b+a & c+a\end{array}\right]\left(\operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{A}^{\top}\right)$
- $=(b-a)(c-a) \operatorname{det}\left[\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 1 \\ a^{2} & b+a & c+a\end{array}\right]$
- $R_{3}-a R_{2}, R_{2}-a R_{1}$
$0=(b-a)(c-a) \operatorname{det}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & b & c\end{array}\right]\left(\operatorname{det} \mathbf{A}=\operatorname{det} \mathbf{A}^{\top}\right)$
- Expand along first row,
- $=(b-a)(c-a) \operatorname{det}\left[\begin{array}{ll}1 & 1 \\ b & c\end{array}\right]$
- $=(b-a)(c-a)(c-b)$

Also, prove an analogous formula for a determinant of order $n$, known as the Vandermonde determinant.

- Observe that det $\left[\begin{array}{ll}1 & 1 \\ b & c\end{array}\right]$ is the Vandermonde det of order 2
- $V_{n}=\operatorname{det}\left[\begin{array}{cccc}1 & 1 & \ldots & 1 \\ a_{1} & a_{2} & \ldots & a_{n} \\ \vdots & & & \\ a_{1}^{n} & a_{2}^{n} & \ldots & a_{n}^{n}\end{array}\right]$
- With the same operations as in the previous part, verify that
- $\operatorname{det}\left[\begin{array}{cccc}1 & 1 & \ldots & 1 \\ a_{1} & a_{2} & \ldots & a_{n} \\ \vdots & & & \\ a_{1}^{n} & a_{2}^{n} & \ldots & a_{n}^{n}\end{array}\right]=\prod_{i=2}^{n}\left(a_{i}-a_{1}\right) \operatorname{det}\left[\begin{array}{cccc}1 & 1 & \ldots & 1 \\ a_{2} & a_{3} & \ldots & a_{n} \\ \vdots & & & \\ a_{2}^{n-1} & a_{3}^{n-1} & \ldots & a_{n}^{n-1}\end{array}\right]$
- Thus, we have $V_{n}=\prod_{i=2}^{n}\left(a_{i}-a_{1}\right) V_{n-1}$. Using this and knowing $V_{1}=1$, check that
- $V_{n}=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)$


## Question 7

For $n \in \mathbb{N}$,
prove that $D_{n}=\operatorname{det}\left[\begin{array}{ccccccc}0 & 0 & 0 & \ldots & 0 & 0 & 1 \\ 0 & 0 & 0 & \ldots & 0 & 1 & 0 \\ & & & & . & & \\ & & & . & & & \\ 0 & 1 & 0 & \ldots & 0 & 0 & 0 \\ 1 & 0 & 0 & \ldots & 0 & 0 & 0\end{array}\right]=(-1)^{n(n-1) / 2}$

- Expanding along the first row, we have
- $D_{n}=(-1)^{1+n} D_{n-1} \quad\left((-1)^{1+n}\right.$ since $1^{\text {st }}$ row and $\mathrm{n}^{\text {th }}$ column $)$
- $D_{n}=(-1)^{n+1}(-1)^{1+n-1} D_{n-2}$
- $D_{n}=(-1)^{n+1}(-1)^{n} \ldots(-1)^{3} D_{1}$
- Since $D_{1}=\operatorname{det}[1]=1$ and $(-1)^{2}=1$, we have
- $D_{n}=(-1)^{n-1}(-1)^{n-2} \ldots(-1)^{1}$
- $D_{n}=(-1)^{n(n-1) / 2}$


## Question 8

For $n \in \mathbb{N}$, prove that
$\operatorname{det}\left[\begin{array}{rrrrrc}1 & 2 & 3 & \ldots & n-1 & n \\ 2 & 2 & 3 & \ldots & n-1 & n \\ 3 & 3 & 3 & \ldots & n-1 & n \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n-1 & n-1 & \ldots & n-1 & n \\ n & n & n & \ldots & n & n\end{array}\right]=(-1)^{n+1} n$.

- $R_{1}-R_{2}, R_{2}-R_{3} \ldots$
- $\operatorname{det}\left[\begin{array}{rrrlrr}-1 & 0 & 0 & \ldots & 0 & 0 \\ -1 & -1 & 0 & \ldots & 0 & 0 \\ -1 & -1 & -1 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ -1 & -1 & -1 & \ldots & -1 & 0 \\ n & n & n & \ldots & n & n\end{array}\right]$
- Triangular Matrix, so $(-1)^{n-1} n=(-1)^{n+1} n$


## Question 9

Find rank $\mathbf{A}$ using determinants, where $\mathbf{A}$ is

$$
\text { (i) }\left[\begin{array}{ccc}
0 & 2 & -3 \\
2 & 0 & 5 \\
-3 & 5 & 0
\end{array}\right] \text {, (ii) }\left[\begin{array}{cc}
4 & 3 \\
-8 & -6 \\
16 & 12
\end{array}\right] \text {. }
$$

Verify by transforming $\mathbf{A}$ to a REF.

- $\operatorname{det}\left[\begin{array}{ccc}0 & 2 & -3 \\ 2 & 0 & 5 \\ -3 & 5 & 0\end{array}\right]=-2 \cdot 15-3 \cdot 10=-60$ implies that the rank is 3
- Row reduction is

$$
\left[\begin{array}{ccc}
0 & 2 & -3 \\
2 & 0 & 5 \\
-3 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 0 & 5 \\
0 & 2 & -3 \\
-3 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 0 & 5 \\
0 & 2 & -3 \\
0 & 5 & 7.5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & 0 & 5 \\
0 & 2 & -3 \\
0 & 0 & 15
\end{array}\right]
$$

# (ii) $\left[\begin{array}{cc}4 & 3 \\ -8 & -6 \\ 16 & 12\end{array}\right]$ 

- $\operatorname{det}\left[\begin{array}{cc}4 & 3 \\ -8 & -6\end{array}\right]=0$
- $\operatorname{det}\left[\begin{array}{cc}4 & 3 \\ 16 & 12\end{array}\right]=0$
- $\operatorname{det}\left[\begin{array}{cc}-8 & -6 \\ 16 & 12\end{array}\right]=0$
- All $2 \times 2$ subdeterminants vanish
- there are nonzero entries, hence the rank is 1
- Row reduction is $\left[\begin{array}{cc}4 & 3 \\ -8 & -6 \\ 16 & 12\end{array}\right] \rightarrow\left[\begin{array}{ll}4 & 3 \\ 0 & 0 \\ 0 & 0\end{array}\right]$


## Tut 4 Question 1

Find the value(s) of $\alpha$ for which Cramer's rule is applicable. For the remaining value(s) of $\alpha$, find the number of solutions, if any.

$$
\begin{aligned}
x+2 y+3 z & =20 \\
x+3 y+z & =13 \\
x+6 y+\alpha z & =\alpha .
\end{aligned}
$$

- Cramer Rule is applicable if matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 1 \\ 1 & 6 & \alpha\end{array}\right]$ is invertible
- $\operatorname{det} \mathbf{A}=\operatorname{det}\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 1 \\ 1 & 6 & \alpha\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -2 \\ 0 & 4 & \alpha-3\end{array}\right]=\alpha+5$
- Which is non zero for $\alpha \neq-5$
- For $\alpha=-5$,

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 20 \\
1 & 3 & 1 & 13 \\
1 & 6 & -5 & -5
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 20 \\
0 & 1 & -2 & -7 \\
0 & 4 & -8 & -25
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 20 \\
0 & 1 & -2 & -7 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

- No solution


## Tut 4 Question 2

Find the cofactor matrix $\mathbf{C}$ of the matrix $\mathbf{A}$, and verify $\mathbf{C}^{\top} \mathbf{A}=(\operatorname{det} \mathbf{A}) \mathbf{I}=\mathbf{A} \mathbf{C}^{\top}$. If $\operatorname{det} \mathbf{A} \neq 0$, find $\mathbf{A}^{-1}$, where $\mathbf{A}$ is
(i) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$,
(ii) $\left[\begin{array}{lll}0 & 9 & 5 \\ 2 & 0 & 0 \\ 0 & 2 & 0\end{array}\right]$,
(iii) $\left[\begin{array}{ccc}1 & 1 / 2 & 1 / 3 \\ 1 / 2 & 1 / 3 & 1 / 4 \\ 1 / 3 & 1 / 4 & 1 / 5\end{array}\right]$.

$$
\begin{aligned}
&- {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] } \\
& \quad M_{11}=d, M_{12}=c, M_{21}=b, M_{22}=a \\
& \quad \text { C }=\left[\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right] \\
& \rightarrow \mathbf{C}^{\top} \mathbf{A}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right]=(\operatorname{det} \mathbf{A}) \mathbf{I} \\
& \rightarrow \mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{A}=\left[\begin{array}{lll}
0 & 9 & 5 \\
2 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]
$$

- $M_{11}=0, M_{12}=0, M_{13}=4, M_{21}=-10, M_{22}=0, M_{23}=0, M_{31}=$ $0, M_{32}=-10, M_{33}=-18$
- $\mathbf{C}=\left[\begin{array}{ccc}0 & 0 & 4 \\ 10 & 0 & 0 \\ 0 & 10 & -18\end{array}\right]$
- $\operatorname{det} \mathbf{A}=0 \times 0-9 \times 0+5 \times 4=20$
- $\mathbf{C}^{\top} \mathbf{A}=\left[\begin{array}{ccc}0 & 10 & 0 \\ 0 & 0 & 10 \\ 4 & 0 & -18\end{array}\right]\left[\begin{array}{lll}0 & 9 & 5 \\ 2 & 0 & 0 \\ 0 & 2 & 0\end{array}\right]=\left[\begin{array}{ccc}20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20\end{array}\right]=(\operatorname{det} \mathbf{A}) \boldsymbol{I}$
- $\mathbf{A}^{-1}=\left[\begin{array}{ccc}0 & 1 / 2 & 0 \\ 0 & 0 & 1 / 2 \\ 1 / 5 & 0 & -9 / 10\end{array}\right]$

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right]
$$

- $M_{11}=\frac{1}{15}-\frac{1}{16}=\frac{1}{240}, M_{22}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}, \cdots$
- $\mathbf{M}=\left[\begin{array}{ccc}1 / 240 & 1 / 60 & 1 / 72 \\ 1 / 60 & 4 / 45 & 1 / 12 \\ 1 / 72 & 1 / 12 & 1 / 12\end{array}\right]$
- $\mathbf{C}=\left[\begin{array}{ccc}1 / 240 & -1 / 60 & 1 / 72 \\ -1 / 60 & 4 / 45 & -1 / 12 \\ 1 / 72 & -1 / 12 & 1 / 12\end{array}\right]$
- $\operatorname{det} \mathbf{A}=\frac{1}{240}-\frac{1}{120}+\frac{1}{216}=\frac{1}{2160}$
- Verify $\mathbf{C}^{\top} \mathbf{A}=(\operatorname{det} \mathbf{A}) \mathbf{I}$
- $\mathbf{A}^{-1}=\left[\begin{array}{ccc}9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180\end{array}\right]$

