MA 106 : Linear Algebra Tutorial 2

Soumya Chatterjee

IIT Bombay

17th March 2021

Soumya Chatterjee (IIT Bombay)

Find the Row Canonical Form of
$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{R_3 \to R_3 - R_1} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 \to -R_3, R_3 \leftrightarrow R_2} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_1 - 3R_3, R_2 + R_3} \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Let
$$\mathbf{A} := \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
. Find \mathbf{A}^{-1} by Gauss-Jordan method.

$$\begin{split} \left[\mathbf{A}|\mathbf{I}\right] &= \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 1 & 1 & 0 & | & 0 & 1 & 0 \\ 1 & 1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 - R_1, R_2 - R_1} \\ \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 1 & 1 & | & -1 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & -1 & 1 \end{bmatrix} \\ Thus \ \mathbf{A}^{-1} &= \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \end{split}$$

Elementary Matrices

An $m \times m$ matrix **E** is called an **elementary matrix** if it is obtained from the identity matrix **I** by an elementary row operation.

Question 3(i)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. If an elementary row operation transforms \mathbf{A} to \mathbf{A}' , then show that $\mathbf{A}' = \mathbf{E}\mathbf{A}$, where \mathbf{E} is the corresponding elementary matrix.

Example

The ERO
$$R_2 + 2R_1$$
 transforms $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ to $\mathbf{A}' = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix}$
The corresponding elementary matrix can be obtained by $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_2 + 2R_1} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ *i.e.*
 $\mathbf{E} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$

Now observe that
$$\mathbf{EA} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 8 \end{bmatrix} = \mathbf{A}'$$

Question 3(i) Contd ..

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. If an elementary row operation transforms \mathbf{A} to \mathbf{A}' , then show that $\mathbf{A}' = \mathbf{E}\mathbf{A}$, where \mathbf{E} is the corresponding elementary matrix.

$$\mathsf{Hint:} \ \mathbf{I} = \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \vdots \\ \mathbf{e}_m \end{bmatrix} \xrightarrow{R_1 + \alpha R_j} \begin{bmatrix} \mathbf{e}_1 + \alpha \mathbf{e}_j \\ \mathbf{e}_2 \\ \vdots \\ \mathbf{e}_m \end{bmatrix} = \mathbf{E}; \ \mathbf{EA} = \begin{bmatrix} a_{11} + \alpha a_{j1} & \cdots & a_{1n} + \alpha a_{jn} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

Can you prove it in general for all 3 EROs?

Question 3 (ii)

Show that every elementary matrix is invertible, and find its inverse.

- An square matrix is invertible if and only if it can be transformed to the identity matrix by EROs (Shown in class)
- Since an elementary matrix is obtained by a single ERO on the identity matrix, we can get back the identity matrix by an ERO on the elementary matrix.
- Why should such an ERO exist?
 - $R_i \leftrightarrow R_j$ can be reversed by $R_i \leftrightarrow R_j$
 - $R_i + \alpha R_j$ by $R_i \alpha R_j$
 - αR_i by $\frac{1}{\alpha}R_i$

For $i \neq j$,

- For the elementary matrix \mathbf{E}_1 corr. to $R_i \leftrightarrow R_j$, $\mathbf{E}_1^{-1} = \mathbf{E}_1$
- For \mathbf{E}_2 corr. to $R_i + \alpha R_j$, $\mathbf{E}_2^{-1} = \mathbf{E}_3$, where \mathbf{E}_3 is the elem. matrix corr. to $R_i \alpha R_j$
- For \mathbf{E}_4 corr. to ERO αR_i , $\mathbf{E}_4^{-1} = \mathbf{E}_5$, where \mathbf{E}_5 is the elem. matrix corr. to $\frac{1}{\alpha}R_i$

Question 3 (ii) Contd ..

Example

• For the elementary matrix
$$\mathbf{E}_1 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, the ERO $R_1 - 2R_2$ gives $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
• The elementary matrix corresponding to the ERO $R_1 - 2R_2$ is $\mathbf{E}_2 = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
• Thus we have $\mathbf{E}_2\mathbf{E}_1 = \mathbf{I}$ (From Question 3 (i))
• For $\mathbf{A} \in \mathbb{R}^{n \times n}$ if there is $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that either $\mathbf{P} \mathbf{A} = \mathbf{I}$ or $\mathbf{A} \mathbf{P} = \mathbf{I}$ then \mathbf{A} is

- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, if there is $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that either $\mathbf{B}\mathbf{A} = \mathbf{I}$ or $\mathbf{A}\mathbf{B} = \mathbf{I}$, then \mathbf{A} is invertible, and $\mathbf{A}^{-1} = \mathbf{B}$ (Shown in class)
- From the above two statement, we have that $\mathbf{E}_1^{-1} = \mathbf{E}_2$

Question 3 (iii)

(a) If a square matrix **A** is a product of elementary matrices, it is invertible

- If square matrices **A** and **B** are invertible, so is **AB** (Proved in class)
- $\mathbf{A} = \mathbf{E}_1 \mathbf{E}_2 \dots \mathbf{E}_k$ and each \mathbf{E}_i is invertible
- Can you complete the proof?

(b) If a square **A** is invertible, it is a product of elementary matrices

- Every square invertible matrix can be converted to I by EROs (Proved in class)
- We have shown that EROs are equivalent to multiplication by corr. elementary matrices
- Thus, there exists $E_1, E_2, \ldots E_k$ such that $E_k E_{k-1} \ldots E_1 A = I$
- Or $\mathbf{A} = \mathbf{E}_1^{-1}\mathbf{E}_2^{-1}\dots\mathbf{E}_k^{-1}$
- We have also shown that inverse of an elementary matrix is an elementary matrix
- So A is a product of elementary matrices.

Techniques for proving $A \rightarrow B$

- Direct Proof: Assume A and through a series of steps, arrive at B
- **Proof by Contrapositive**: Assume $\neg B$, arrive at $\neg A$. This works since $A \rightarrow B \equiv \neg A \lor B \equiv \neg (\neg B) \lor \neg A \equiv \neg B \rightarrow \neg A$
- Proof by Contradiction: Assume A and ¬B and derive a contradiction ¹. This works since, it can be shown that A → B ≡ (A ∧ ¬B) → FALSE
- We will be using proof by contradiction in the following question

¹For a more general form, see Wiki:Proof by Contradiction

Let S and T be subsets of $\mathbb{R}^{n \times 1}$ such that $S \subset T$. Show that if S is linearly dependent then so is T. If T is linearly independent then so is S.

- Let $S = \{\mathbf{a}_1, \mathbf{a}_2 \dots, \mathbf{a}_s\}$ and $T = S \cup \{\mathbf{a}_{s+1}, \mathbf{a}_{s+2} \dots, \mathbf{a}_{s+t}\}$, where s = |S|
- Since $S \subset T$, $|T \setminus S| > 0$ i.e t > 0
- Given S is linearly dependent,
 - We have $\alpha_1 \dots \alpha_s$, not all zero, such that $\sum_{i=1}^s \alpha_i \mathbf{a}_i = \mathbf{0}$
 - Define $\{\alpha_{s+1}, \alpha_{s+2} \dots \alpha_{s+t}\}$, all equal to 0
 - $\sum_{j=1}^{s} \alpha_{j} \mathbf{a}_{j} + \sum_{j=1}^{t} \alpha_{s+j} \cdot \mathbf{a}_{s+j} = \mathbf{0} \Longrightarrow \sum_{j=1}^{s+t} \alpha_{j} \mathbf{a}_{j} = \mathbf{0}$
 - These are exactly the set of vectors in \overline{T} . Thus T is linearly dependent.
- For contradiction, assume T is linearly independent and S is not
 - Since S is not linearly independent, $\exists \alpha_j$, not all zero, s.t. $\sum_{i=1}^{s} \alpha_i \mathbf{a}_i = \mathbf{0}$
 - Choosing $\{\alpha_{s+1}, \alpha_{s+2} \dots \alpha_{s+t}\}$, all equal to 0, we get $\sum_{j=1}^{s+t} \alpha_j \mathbf{a}_j = \mathbf{0}$
 - ightarrow T is linearly dependent, a contradiction (to our assumption that T is linearly independent)

Question 4 Contd ..

Converse

(i) T is linearly dependent \Rightarrow S is also linearly dependent

 $T = \{[1,0], [1,1], [0,1]\}, S = \{[1,0], [0,1]\}$

(ii) S is linearly independent \Rightarrow T is also linearly independent

 $S = \{[1,0], [0,1]\}, T = \{[1,0], [1,1], [0,1]\}$

Are the following sets linearly independent?

(i) Follows from the fact that if S is a set of vectors of length n and if S has more than n elements, then S is linearly dependent.

3 non-zero rows, so row rank is 3 or the 3 rows are linearly independent

(iii) Show REF of $\begin{bmatrix} 1 & 3 & 1 \\ -1 & -5 & -2 \\ 0 & 2 & 1 \end{bmatrix}$ has 3 non-zero rows

Given a set of *s* linearly independent row vectors $\{\mathbf{a}_1, \ldots, \mathbf{a}_i, \ldots, \mathbf{a}_j, \ldots, \mathbf{a}_s\}$ in $\mathbb{R}^{1 \times n}$ and $\alpha \in \mathbb{R}$, show that the set $\{\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_i + \alpha \mathbf{a}_j, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_j, \ldots, \mathbf{a}_s\}$ is linearly independent.

- For the sake of contradiction, suppose that $\{a_i\}$ are linearly independent but $\{a_1, \ldots, a_{i-1}, a_i + \alpha a_j, a_{i+1}, \ldots, a_j, \ldots, a_s\}$ are not linearly independent
- Thus these exists scalars $c_1, c_2 \dots c_s$, not all 0, such that

$$\sum_{k=1}^{i-1} c_k \mathbf{a}_k + c_i (\mathbf{a}_i + \alpha \mathbf{a}_j) + c_j \mathbf{a}_j + \sum_{k=i+1, k \neq j}^{s} c_k \mathbf{a}_k = 0$$
$$\sum_{k=1}^{i-1} c_k \mathbf{a}_k + c_i \mathbf{a}_i + (c_i \alpha + c_j) \mathbf{a}_j + \sum_{k=i+1, k \neq j}^{s} c_k \mathbf{a}_k = 0$$

• So there exist $c_1',c_2'\ldots c_s'$, not all zero, such that $\sum c_k' \mathbf{a}_k = 0$

- What are $c'_1 \dots c'_s$ in terms of $c_1, \dots c_s$? Why is there a non-zero c'_k ?
- \bullet This contradicts our assumption that $\{a_i\}$ are linearly independent

Question 7 (i)

Find the rank of the given matrix

• We know that elementary row operations do not change rank

•
$$\begin{bmatrix} 8 & -4 \\ -2 & 1 \\ 6 & -3 \end{bmatrix} \xrightarrow{R_2 \to -R_2, R_1 \leftrightarrow R_2} \begin{bmatrix} 2 & -1 \\ 8 & -4 \\ 6 & -3 \end{bmatrix} \xrightarrow{?} \begin{bmatrix} 2 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

• One non-zero row (one pivot), so rank=1

$$\bullet \begin{bmatrix} 0 & 8 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 5 \end{bmatrix} (rank = 3)$$