MA 106 : Linear Algebra
 Tutorial 2

Soumya Chatterjee
IIT Bombay
$17^{\text {th }}$ March 2021

Question 1

Find the Row Canonical Form of $\left[\begin{array}{cccc}1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 2 & 0\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 2 & 0
\end{array}\right] \xrightarrow{R_{3} \rightarrow R_{3}-R_{1}}\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
0 & 0 & 1 & -1 \\
0 & -1 & 1 & -1
\end{array}\right] \xrightarrow{R_{3} \rightarrow-R_{3}, R_{3} \leftrightarrow R_{2}}\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1
\end{array}\right] \xrightarrow{R_{1}-2 R_{2}}} \\
& {\left[\begin{array}{cccc}
1 & 0 & 3 & 3 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1
\end{array}\right] \xrightarrow{R_{1}-3 R_{3}, R_{2}+R_{3}}\left[\begin{array}{cccc}
1 & 0 & 0 & 6 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]}
\end{aligned}
$$

Question 2

Let $\mathbf{A}:=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$. Find \mathbf{A}^{-1} by Gauss-Jordan method.

$$
\begin{aligned}
& {[\mathbf{A} \mid \mathbf{I}]=\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}-R_{1}, R_{2}-R 1}} \\
& {\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}-R_{2}}\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]} \\
& \text { Thus } \mathbf{A}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Elementary Matrices

An $m \times m$ matrix \mathbf{E} is called an elementary matrix if it is obtained from the identity matrix \mathbf{I} by an elementary row operation.

Example

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. So $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ is the elem. matrix corr. to ERO $R_{1} \leftrightarrow R_{2}$.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \xrightarrow{R_{1}+2 R_{2}}\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. So $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ is the elem. matrix corr. to ERO $R_{1}+2 R_{2}$.

Question 3 (i)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. If an elementary row operation transforms \mathbf{A} to \mathbf{A}^{\prime}, then show that $\mathbf{A}^{\prime}=\mathbf{E A}$, where \mathbf{E} is the corresponding elementary matrix.

Example

The ERO $R_{2}+2 R_{1}$ transforms $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ to $\mathbf{A}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 5 & 8\end{array}\right]$
The corresponding elementary matrix can be obtained by $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \xrightarrow{R_{2}+2 R_{1}}\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ i.e.
$\mathbf{E}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
Now observe that EA $=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 5 & 8\end{array}\right]=\mathbf{A}^{\prime}$

Question 3(i) Contd ..

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. If an elementary row operation transforms \mathbf{A} to \mathbf{A}^{\prime}, then show that $\mathbf{A}^{\prime}=\mathbf{E A}$, where \mathbf{E} is the corresponding elementary matrix.
Hint: $\mathbf{I}=\left[\begin{array}{c}\mathbf{e}_{1} \\ \mathbf{e}_{2} \\ \vdots \\ \mathbf{e}_{m}\end{array}\right] \xrightarrow{R_{1}+\alpha R_{j}}\left[\begin{array}{c}\mathbf{e}_{1}+\alpha \mathbf{e}_{j} \\ \mathbf{e}_{2} \\ \vdots \\ \mathbf{e}_{m}\end{array}\right]=\mathbf{E} ; \mathbf{E A}=\left[\begin{array}{ccc}a_{11}+\alpha a_{j 1} & \cdots & a_{1 n}+\alpha a_{j n} \\ a_{21} & \cdots & a_{2 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right]$
Can you prove it in general for all 3 EROs?

Question 3 (ii)

Show that every elementary matrix is invertible, and find its inverse.

- An square matrix is invertible if and only if it can be transformed to the identity matrix by EROs (Shown in class)
- Since an elementary matrix is obtained by a single ERO on the identity matrix, we can get back the identity matrix by an ERO on the elementary matrix.
- Why should such an ERO exist?
- $R_{i} \leftrightarrow R_{j}$ can be reversed by $R_{i} \leftrightarrow R_{j}$
- $R_{i}+\alpha R_{j}$ by $R_{i}-\alpha R_{j}$
- αR_{i} by $\frac{1}{\alpha} R_{i}$

For $i \neq j$,

- For the elementary matrix \mathbf{E}_{1} corr. to $R_{i} \leftrightarrow R_{j}, \mathbf{E}_{1}^{-1}=\mathbf{E}_{1}$
- For \mathbf{E}_{2} corr. to $R_{i}+\alpha R_{j}, \mathbf{E}_{2}^{-1}=\mathbf{E}_{3}$, where \mathbf{E}_{3} is the elem. matrix corr. to $R_{i}-\alpha R_{j}$
- For \mathbf{E}_{4} corr. to $\mathrm{ERO} \alpha R_{i}, \mathbf{E}_{4}^{-1}=\mathbf{E}_{5}$, where \mathbf{E}_{5} is the elem. matrix corr. to $\frac{1}{\alpha} R_{i}$

Question 3 (ii) Contd ..

Example

- For the elementary matrix $\mathbf{E}_{1}=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, the ERO $R_{1}-2 R_{2}$ gives $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- The elementary matrix corresponding to the ERO $R_{1}-2 R_{2}$ is $\mathbf{E}_{2}=\left[\begin{array}{ccc}1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
- Thus we have $\mathbf{E}_{2} \mathbf{E}_{1}=\mathbf{I}$ (From Question 3 (i))
- For $\mathbf{A} \in \mathbb{R}^{n \times n}$, if there is $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that either $\mathbf{B A}=\mathbf{I}$ or $\mathbf{A B}=\mathbf{I}$, then \mathbf{A} is invertible, and $\mathbf{A}^{-1}=\mathbf{B}$ (Shown in class)
- From the above two statement, we have that $\mathbf{E}_{1}^{-1}=\mathbf{E}_{2}$

Question 3 (iii)

(a) If a square matrix \mathbf{A} is a product of elementary matrices, it is invertible

- If square matrices \mathbf{A} and \mathbf{B} are invertible, so is $\mathbf{A B}$ (Proved in class)
- $\mathbf{A}=\mathbf{E}_{1} \mathbf{E}_{2} \ldots \mathbf{E}_{k}$ and each \mathbf{E}_{i} is invertible
- Can you complete the proof?
(b) If a square \mathbf{A} is invertible, it is a product of elementary matrices
- Every square invertible matrix can be converted to I by EROs (Proved in class)
- We have shown that EROs are equivalent to multiplication by corr. elementary matrices
- Thus, there exists $\mathbf{E}_{1}, \mathbf{E}_{2}, \ldots \mathbf{E}_{k}$ such that $\mathbf{E}_{k} \mathbf{E}_{k-1} \ldots \mathbf{E}_{1} \mathbf{A}=\mathbf{I}$
- $\operatorname{Or} \mathbf{A}=\mathbf{E}_{1}^{-1} \mathbf{E}_{2}^{-1} \ldots \mathbf{E}_{k}^{-1}$
- We have also shown that inverse of an elementary matrix is an elementary matrix
- So \mathbf{A} is a product of elementary matrices.

Techniques for proving $A \rightarrow B$

- Direct Proof: Assume A and through a series of steps, arrive at B
- Proof by Contrapositive: Assume $\neg B$, arrive at $\neg A$. This works since $A \rightarrow B \equiv \neg A \vee B \equiv \neg(\neg B) \vee \neg A \equiv \neg B \rightarrow \neg A$
- Proof by Contradiction: Assume A and $\neg B$ and derive a contradiction ${ }^{1}$. This works since, it can be shown that $A \rightarrow B \equiv(A \wedge \neg B) \rightarrow$ FALSE
- We will be using proof by contradiction in the following question

[^0]
Question 4

Let S and T be subsets of $\mathbb{R}^{n \times 1}$ such that $S \subset T$. Show that if S is linearly dependent then so is T. If T is linearly independent then so is S.

- Let $S=\left\{\mathbf{a}_{1}, \mathbf{a}_{2} \ldots, \mathbf{a}_{s}\right\}$ and $T=S \cup\left\{\mathbf{a}_{s+1}, \mathbf{a}_{s+2} \ldots, \mathbf{a}_{s+t}\right\}$, where $s=|S|$
- Since $S \subset T,|T \backslash S|>0$ i.e $t>0$
- Given S is linearly dependent,
- We have $\alpha_{1} \ldots \alpha_{s}$, not all zero, such that $\sum_{j=1}^{s} \alpha_{j} \mathbf{a}_{j}=\mathbf{0}$
- Define $\left\{\alpha_{s+1}, \alpha_{s+2} \ldots \alpha_{s+t}\right\}$, all equal to 0
- $\sum_{j=1}^{s} \alpha_{j} \mathbf{a}_{j}+\sum_{j=1}^{t} \alpha_{s+j} \cdot \mathbf{a}_{s+j}=\mathbf{0} \Longrightarrow \sum_{j=1}^{s+t} \alpha_{j} \mathbf{a}_{j}=\mathbf{0}$
- These are exactly the set of vectors in T. Thus T is linearly dependent.
- For contradiction, assume T is linearly independent and S is not
- Since S is not linearly independent, $\exists \alpha_{j}$, not all zero, s.t. $\sum_{j=1}^{s} \alpha_{j} \mathbf{a}_{j}=\mathbf{0}$
- Choosing $\left\{\alpha_{s+1}, \alpha_{s+2} \ldots \alpha_{s+t}\right\}$, all equal to 0 , we get $\sum_{j=1}^{s+t} \alpha_{j} \mathbf{a}_{j}=\mathbf{0}$
- $\Rightarrow T$ is linearly dependent, a contradiction (to our assumption that T is linearly independent)

Question 4 Contd ..

Converse

(i) T is linearly dependent $\Rightarrow S$ is also linearly dependent

$$
T=\{[1,0],[1,1],[0,1]\}, S=\{[1,0],[0,1]\}
$$

(ii) S is linearly independent $\Rightarrow T$ is also linearly independent

$$
S=\{[1,0],[0,1]\}, T=\{[1,0],[1,1],[0,1]\}
$$

Question 5

Are the following sets linearly independent?
(i) $\left\{\left[\begin{array}{lll}1 & -1 & 1\end{array}\right],\left[\begin{array}{lll}3 & 5 & 2\end{array}\right],\left[\begin{array}{lll}1 & 2 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right\} \subset \mathbb{R}^{1 \times 3}$
(ii) $\left\{\left[\begin{array}{llll}1 & 9 & 9 & 8\end{array}\right],\left[\begin{array}{cccc}2 & 0 & 0 & 3\end{array}\right],\left[\begin{array}{cccc}2 & 0 & 0 & 8\end{array}\right]\right\} \subset \mathbb{R}^{1 \times 4}$
(iii) $\left\{\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{\top},\left[\begin{array}{lll}3 & -5 & 2\end{array}\right]^{\top},\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]^{\top}\right\} \subset \mathbb{R}^{3 \times 1}$
(i) Follows from the fact that if S is a set of vectors of length n and if S has more than n elements, then S is linearly dependent.
(ii) $\left[\begin{array}{llll}1 & 9 & 9 & 8 \\ 2 & 0 & 0 & 3 \\ 2 & 0 & 0 & 8\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 9 & 9 & 8 \\ 2 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 9 & 9 & 8 \\ 0 & -18 & -18 & -13 \\ 0 & 0 & 0 & 5\end{array}\right]$

3 non-zero rows, so row rank is 3 or the 3 rows are linearly independent
(iii) Show REF of $\left[\begin{array}{ccc}1 & 3 & 1 \\ -1 & -5 & -2 \\ 0 & 2 & 1\end{array}\right]$ has 3 non-zero rows

Question 6

Given a set of s linearly independent row vectors $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i}, \ldots, \mathbf{a}_{j}, \ldots, \mathbf{a}_{s}\right\}$ in $\mathbb{R}^{1 \times n}$ and $\alpha \in \mathbb{R}$, show that the set $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_{i}+\alpha \mathbf{a}_{j}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_{j}, \ldots, \mathbf{a}_{s}\right\}$ is linearly independent.

- For the sake of contradiction, suppose that $\left\{\mathbf{a}_{i}\right\}$ are linearly independent but $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}, \mathbf{a}_{i}+\alpha \mathbf{a}_{j}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_{j}, \ldots, \mathbf{a}_{s}\right\}$ are not linearly independent
- Thus these exists scalars $c_{1}, c_{2} \ldots c_{s}$, not all 0 , such that

$$
\begin{aligned}
& \sum_{k=1}^{i-1} c_{k} \mathbf{a}_{k}+c_{i}\left(\mathbf{a}_{i}+\alpha \mathbf{a}_{j}\right)+c_{j} \mathbf{a}_{j}+\sum_{k=i+1, k \neq j}^{s} c_{k} \mathbf{a}_{k}=0 \\
& \sum_{k=1}^{i-1} c_{k} \mathbf{a}_{k}+c_{i} \mathbf{a}_{i}+\left(c_{i} \alpha+c_{j}\right) \mathbf{a}_{j}+\sum_{k=i+1, k \neq j}^{s} c_{k} \mathbf{a}_{k}=0
\end{aligned}
$$

- So there exist $c_{1}^{\prime}, c_{2}^{\prime} \ldots c_{s}^{\prime}$, not all zero, such that $\sum c_{k}^{\prime} \mathbf{a}_{k}=0$
- What are $c_{1}^{\prime} \ldots c_{s}^{\prime}$ in terms of $c_{1}, \ldots c_{s}$? Why is there a non-zero c_{k}^{\prime} ?
- This contradicts our assumption that $\left\{\mathbf{a}_{i}\right\}$ are linearly independent

Question 7 (i)

Find the rank of the given matrix

- We know that elementary row operations do not change rank
- $\left[\begin{array}{cc}8 & -4 \\ -2 & 1 \\ 6 & -3\end{array}\right] \xrightarrow{R_{2} \rightarrow-R_{2}, R_{1} \leftrightarrow R_{2}}\left[\begin{array}{cc}2 & -1 \\ 8 & -4 \\ 6 & -3\end{array}\right] \xrightarrow{?}\left[\begin{array}{cc}2 & -1 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
- One non-zero row (one pivot), so rank=1
- $\left[\begin{array}{ccc}0 & 8 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 5\end{array}\right]($ rank $=3)$

[^0]: ${ }^{1}$ For a more general form, see Wiki:Proof by Contradiction

