MA 106 : Linear Algebra Tutorial 1

Soumya Chatterjee
IIT Bombay
$10^{\text {th }}$ March 2021

Logistics

- Tutorial: Wednesdays 2-3 PM on MS Teams
- Use Discussion Forum on Teams for posting doubts
- Contact via email (170070010@iitb.ac.in) or using MS Teams chat
- Some steps and/or reasons might be omitted in the slides
- In case of difference in notation, please follow the ones used in class for the exams
- Question?

Question 1

Let \mathbf{A} be a square matrix. Show that there is a symmetric matrix \mathbf{B} and there is a skew-symmetric matrix \mathbf{C} such that $\mathbf{A}=\mathbf{B}+\mathbf{C}$. Are \mathbf{B} and \mathbf{C} unique?

- Given $\mathbf{A}=\mathbf{B}+\mathbf{C}$
- We have $\mathbf{A}^{\top}=\mathbf{B}^{\top}+\mathbf{C}^{\top}$
- Now since \mathbf{B} is symmetric and \mathbf{C} is skew-symmetric, we have

$$
\mathbf{B}^{\top}=\mathbf{B} \quad \text { and } \quad \mathbf{C}^{\top}=-\mathbf{C}
$$

- This gives us $\mathbf{A}^{\top}=\mathbf{B}-\mathbf{C}$
- Using $\mathbf{A}=\mathbf{B}+\mathbf{C}$ and $\mathbf{A}^{\top}=\mathbf{B}-\mathbf{C}$, we have

$$
\mathbf{B}=\frac{\mathbf{A}+\mathbf{A}^{\top}}{2} \quad \& \quad \mathbf{C}=\frac{\mathbf{A}-\mathbf{A}^{\top}}{2}
$$

- B and \mathbf{C} are unique.

Recall

- The j th row of $\mathbf{A B}$ is a linear combination of the row vectors of \mathbf{B} with coefficients $a_{j 1}, a_{j 2} \ldots$ provided by the j th row of \mathbf{A}.
- The k th column of $\mathbf{A B}$ is a linear combination of the column vectors of \mathbf{A} with coefficients $b_{1 k}, b_{2 k} \ldots$ provided by the k th column of \mathbf{B}.

Question 2

Let $\mathbf{A}:=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ and $\mathbf{B}:=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Write
(i) the second row of $\mathbf{A B}$ as a linear combination of rows of \mathbf{B}
(ii) the second column of $\mathbf{A B}$ as a linear combination of columns of \mathbf{A}

- Let $\mathbf{C}=\mathbf{A B}$. Then $c_{i j}=\mathbf{a}_{i} \mathbf{b}_{j}$ where \mathbf{a}_{i} is the $i^{\text {th }}$ row of \mathbf{A} and \mathbf{b}_{j} is the $j^{\text {th }}$ column of \mathbf{B}
- Second row of $\mathbf{C}=\mathbf{a}_{2} \mathbf{B}=\left[\mathbf{a}_{2} \mathbf{b}_{1}, \mathbf{a}_{2} \mathbf{b}_{2}, \mathbf{a}_{2} \mathbf{b}_{3}\right]$
- $\left[\mathbf{a}_{2} \mathbf{b}_{1}, \mathbf{a}_{2} \mathbf{b}_{2}, \mathbf{a}_{2} \mathbf{b}_{3}\right]=\left[a_{21} b_{11}+a_{22} b_{21}, a_{21} b_{12}+a_{22} b_{22}, a_{21} b_{13}+a_{22} b_{23}\right]$ $=\left[a_{21} b_{11}, a_{21} b_{12}, a_{21} b_{13}\right]+\left[a_{22} b_{21}, a_{22} b_{22}, a_{22} b_{23}\right]=a_{21} \mathbf{b}_{1}^{\prime}+a_{22} \mathbf{b}_{2}^{\prime}$
- $\mathbf{b}_{1}^{\prime}=\left[b_{11}, b_{12}, b_{13}\right]$ and $\mathbf{b}_{2}^{\prime}=\left[b_{21}, b_{22}, b_{23}\right]$ are the rows of \mathbf{B}
- (i) 3 [1 2 3 3] $+4\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]$
- (ii) $\mathbf{A} \mathbf{b}_{2}=2\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]+5\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$

Question 3

Let $\mathbf{A}:=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ -3 & -17 & 1 & 2 \\ 4 & -24 & 8 & -5 \\ 0 & -7 & 2 & 2\end{array}\right]$.
Assuming that \mathbf{A} is invertible, find the last column and the last row of \mathbf{A}^{-1}

- Let $\mathbf{x}=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{\top}$ be the last column of \mathbf{A}^{-1}
- We know that $\mathbf{A A}^{-1}=\mathbf{I}$
- We also know that the $k^{t h}$ column of $\mathbf{A B}$ is given by $\sum_{i} b_{i k} \mathbf{a}_{i}$ where \mathbf{a}_{i} is the $i^{\text {th }}$ column of \mathbf{A}
- Thus the fourth column of $\mathbf{A A}^{-1}$ is $\left(\mathbf{e}_{4}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{\top}\right)$

$$
x_{1}\left[\begin{array}{llll}
1 & -3 & 4 & 0
\end{array}\right]^{\top}+x_{2}\left[\begin{array}{llll}
1 & -17 & -24 & -7
\end{array}\right]^{\top}+x_{3}[\cdots]^{\top}+x_{4}[\cdots \cdot]^{\top}=\mathbf{e}_{4}
$$

- 4 equations in 4 variables. Solve for \mathbf{x} (Reduce to row echelon form?)
- For the last row of \mathbf{A}^{-1}, use $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ to get
- $y_{1}\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]+y_{2}\left[\begin{array}{llll}-3 & -17 & 1 & 2\end{array}\right]+y_{3}[\cdots]+y_{4}\left[\begin{array}{llll}0 & -7 & 2\end{array}\right]=\mathbf{e}_{4}^{\top}$

Question 4

Show that the product of two upper triangular matrices is upper triangular. Is this true for lower triangular matrices?

- Let $\mathbf{A} \in \mathbb{R}^{1, m}$ and $\mathbf{B} \in \mathbb{R}^{m, n}$ be two upper triangular matrices
- By the definition of upper triangular matrices, $a_{i j}=b_{i j}=0 \forall i>j$
- Let $\mathbf{C}=\mathbf{A B}$
- We know that $c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}=\sum_{k=1}^{i-1} a_{i k} b_{k j}+\sum_{k=i}^{m} a_{i k} b_{k j}$

$$
c_{i j}=\sum_{k=1}^{i-1} a_{i k} b_{k j}+\sum_{k=i}^{m} a_{i k} b_{k j}
$$

- For $i>j$,
- In the first summation, $i>k$ so $a_{i k}=0$
- In the second summation, $k>j$ so $b_{k j}=0$
- $\therefore c_{i j}=0 \forall i>j$. Thus $\mathbf{C}=\mathbf{A B}$ is upper triangular
- If \mathbf{A} is lower triangular, then \mathbf{A}^{\top} is upper triangular and vice versa. Prove this and use it to answer the second part.

Question 5

The trace of a square matrix is the sum of its diagonal entries. Show that $\operatorname{trace}(\mathbf{A}+\mathbf{B})=\operatorname{trace}(\mathbf{A})+\operatorname{trace}(\mathbf{B})$ and $\operatorname{trace}(\mathbf{A B})=\operatorname{trace}(\mathbf{B A})$ for $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$.

- $\operatorname{trace}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}$
- $\operatorname{trace}(\mathbf{A}+\mathbf{B})=\sum_{i=1}^{n}\left(a_{i i}+b_{i i}\right)$ (Why?)

$$
\begin{aligned}
& =\sum_{i=1}^{n} a_{i i}+\sum_{i=1}^{n} b_{i i} \\
& =\operatorname{trace}(\mathbf{A})+\operatorname{trace}(\mathbf{B})
\end{aligned}
$$

- Let $\mathbf{C}=\mathbf{A B}$ and $\mathbf{D}=\mathbf{B A}$
- $\operatorname{trace}(\mathbf{A B})=\sum_{i=1}^{n} c_{i i}$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{j i} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} b_{j i} a_{i j} \\
& =\sum_{j=1}^{n} d_{j j} \\
& =\operatorname{trace}(\mathbf{B A})
\end{aligned}
$$

- Write reasons for each (non-trivial) step in exams

Question 6(i)

Find all solutions of $\mathbf{A x}=\mathbf{b}$ by reducing \mathbf{A} to a row echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 6 \\
2 & 6 & 0 & 8 & 4 & 18 & 6
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-2 R_{1}, R_{4} \rightarrow R_{4}-2 R_{1} \\
& {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 6 \\
0 & 0 & 4 & 8 & 0 & 18 & 6
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}+5 R_{2}, R_{4} \rightarrow R_{4}+4 R_{2} \\
& {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 6 & 2
\end{array}\right]}
\end{aligned}
$$

Question 6(i) Contd.

Find all solutions of $\mathbf{A x}=\mathbf{b}$ by reducing \mathbf{A} to a row echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 6 & 2
\end{array}\right]} \\
& R_{3} \leftrightarrow R_{4} \\
& {\left[\begin{array}{cccccc|c}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
0 & 0 & -1 & -2 & 0 & -3 & -1 \\
0 & 0 & 0 & 0 & 0 & 6 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

The last row gives $0=1$. Thus no solution exists.

Question 6 (ii)

Find all solutions of $\mathbf{A x}=\mathbf{b}$ by reducing \mathbf{A} to a row echelon form.

$$
\begin{aligned}
& {[\mathbf{A} \mid \mathbf{b}]=\left[\begin{array}{ccc|c}
2 & 1 & 1 & 5 \\
4 & -6 & 0 & -2 \\
-2 & 7 & 2 & 9
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}+R_{3} \\
& {\left[\begin{array}{ccc|c}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 8 & 3 & 14
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}+R_{2} \\
& {\left[\begin{array}{ccc|c}
2 & 1 & 1 & 5 \\
0 & -8 & -2 & -12 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
& 2 x_{1}+x_{2}+x_{3}=5,-8 x_{2}-2 x_{3}=-12 \text { and } x_{3}=2
\end{aligned}
$$

By back substitution, $x_{3}=2, x_{2}=1, x_{1}=1$
$\mathbf{x}=\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]^{\top}$

Question 6 (iii)

Find all solutions of $\mathbf{A x}=\mathbf{b}$ by reducing \mathbf{A} to a row echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
0 & 2 & -2 & 1 & 2 \\
2 & -8 & 14 & -5 & 2 \\
1 & 3 & 0 & 1 & 8
\end{array}\right]} \\
& R_{3} \leftrightarrow R_{1} \\
& {\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 8 \\
2 & -8 & 14 & -5 & 2 \\
0 & 2 & -2 & 1 & 2
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-2 R_{1} \\
& {\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 8 \\
0 & -14 & 14 & -7 & -14 \\
0 & 2 & -2 & 1 & 2
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}+\frac{1}{7} R_{2} \\
& {\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 8 \\
0 & -14 & 14 & -7 & -14 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Question 6 (iii) Contd..

$$
\begin{aligned}
& R_{2} \rightarrow-\frac{1}{7} R_{2} \\
& {\left[\begin{array}{cccc|c}
1 & 3 & 0 & 1 & 8 \\
0 & 2 & -2 & -1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

- Particular Solution: Set $x_{3}=x_{4}=0$. By back substitution, we get $x_{2}=1, x_{1}=5$ i.e $\mathbf{x}_{0}=\left[\begin{array}{llll}5 & 1 & 0 & 0\end{array}\right]^{\top}$
- Basic solutions:
- $x_{3}=1, x_{4}=0$ gives $\mathbf{s}_{1}=\left[\begin{array}{llll}-3 & 1 & 1 & 0\end{array}\right]^{\top}$
- $x_{4}=1, x_{3}=0$ gives $\mathbf{s}_{2}=\left[\begin{array}{llll}-5 / 2 & 1 / 2 & 0 & 1\end{array}\right]^{\top}$
- All Solutions (i.e. General solution) : $\mathbf{x}=\mathbf{x}_{0}+\alpha_{1} \mathbf{s}_{1}+\alpha_{2} \mathbf{s}_{2}$ where $\alpha_{1}, \alpha_{2} \in \mathbb{R}$

