Model-agnostic Fits for Understanding Information Seeking Patterns in Humans

Soumya Chatterjee, Pradeep Shenoy
IIT Bombay Google Research India
Modeling human decision-making under uncertainty

- A fundamental problem in cognitive science:
 - How do humans *seek and integrate information* while making decisions?
 - How do we *capture deviations* from optimality? individual variation?

- Applications in human-computer or human-AI interactions
 - Avoiding “echo chambers” in social media
 - Encouraging diversity in recommendations & media consumption
 - Building effective cognitive assistants, e.g., health & wellness tracking
Previous Modelling Approaches

- Propose model from *first principles* of learning/optimization, e.g., reinforcement learning [1]
 - tweak model to cover idiosyncrasies of specific task

- Propose *mechanistic models* that fit data, e.g., exponential weighting, or drift-diffusion models [2]
 - Describe the *process* without explaining the *goal*

- Challenges in these approaches
 - Explanatory power limited by *inductive bias* proposed by modeler
 - Need sufficient data for fitting models

Our work

- **Contribution 1: avoid modeler-specified inductive biases**
 - Deep learning approach for fitting human behavior
 - DNN architecture that reflects the structure of the task, but not the goals or rewards
 - Recover subjects’ action policies purely by replicating behavior
Our work

- **Contribution 1: avoid modeler-specified inductive biases**
 - Deep learning approach for fitting human behavior
 - DNN architecture that reflects the structure of the task, but not the goals or rewards
 - Recover subjects’ action policies purely by replicating behavior

- **Contribution 2: handle extreme data paucity, for subject-specific models**
 - Leverage large subject populations and shared parameters
 - Simultaneously learn population-level and individual-level model fits

- Model agnostic
- Captures behavioral biases
- Subject-specific fits with just 6 trials per subject!
Our work

- **Contribution 1: avoid modeler-specified inductive biases**
 - Deep learning approach for fitting human behavior
 - DNN architecture that reflects the structure of the task, but not the goals or rewards
 - Recover subjects’ action policies purely by replicating behavior

- **Contribution 2: handle extreme data paucity, for subject-specific models**
 - Leverage large subject populations and shared parameters
 - Simultaneously learn population-level and individual-level model fits

- **Non-goal for this talk: explaining implicit policies contained in DNNs**
 - Significantly raise performance bar for alternate predictive/explanatory models
 - Future work: interpretable DNN policy learning
Behavioural Task: Sequential sampling & choice

Multi-step sampling task [1]:

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

Figure adapted from [1] Approach-Induced Biases in Human Information Sampling. Hunt et al, 2016, PLOS Biology, 14(11)
Behavioural Task: Sequential sampling & choice

Multi-step sampling task [1]:

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

Figure adapted from [1] Approach-Induced Biases in Human Information Sampling. Hunt et al, 2016, PLOS Biology, 14(11)
Behavioural Task: Sequential sampling & choice

Multi-step sampling task [1]:

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

Figure adapted from [1] Approach-Induced Biases in Human Information Sampling. Hunt et al, 2016, PLOS Biology, 14(11)
Behavioural Task: Sequential sampling & choice

Multi-step sampling task [1]:

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

Figure adapted from [1] Approach-Induced Biases in Human Information Sampling. Hunt et al., 2016, PLOS Biology, 14(11)
Behavioural Task: Sequential sampling & choice

Multi-step sampling task [1]:

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

Figure adapted from [1] Approach-Induced Biases in Human Information Sampling. Hunt et, al, 2016, PLOS Biology, 14(11)
Proposed Models

- **Baseline: Card Value Based Model [1]**
 - Simple softmax heuristic model with hand crafted parameters (population level)

- **DNN Population Model (Pop-DNN)**
 - Cascaded DNNs fitted to behaviour from entire population

- **DNN Subject Specific Model (Subj-DNN)**
 - Subject specific embeddings
 - Other parameters shared across subjects

- **Multiple tasks Model (Multi-DNN)**
 - Multiple nets one for each task
 - Shared subject embeddings

Proposed Models

- **Baseline: Card Value Based Model [1]**
 - Simple softmax heuristic model with hand crafted parameters (population level)

- **DNN Population Model (Pop-DNN)**
 - Cascaded DNNs fitted to behaviour from entire population

- **DNN Subject Specific Model (Subj-DNN)**
 - Subject specific embeddings
 - Other parameters shared across subjects

- **Multiple tasks Model (Multi-DNN)**
 - Multiple nets one for each task
 - Shared subject embeddings

Proposed Models

- **Baseline: Card Value Based Model [1]**
 - Simple softmax heuristic model with hand crafted parameters (population level)

- **DNN Population Model (Pop-DNN)**
 - Cascaded DNNs fitted to behaviour from entire population

- **DNN Subject Specific Model (Subj-DNN)**
 - Subject specific embeddings
 - Other parameters shared across subjects

- **Multiple tasks Model (Multi-DNN)**
 - Multiple nets one for each task
 - Shared subject embeddings

Proposed Models

- **Baseline: Card Value Based Model [1]**
 - Simple softmax heuristic model with hand crafted parameters (population level)

- **DNN Population Model (Pop-DNN)**
 - Cascaded DNNs fitted to behaviour from entire population

- **DNN Subject Specific Model (Subj-DNN)**
 - Subject specific embeddings
 - Other parameters shared across subjects

- **Multiple tasks Model (Multi-DNN)**
 - Multiple nets one for each task
 - Shared subject embeddings

Evaluation of proposed approach

1. Does our model fit data better?

2. Does the model capture known biases at a population level?

3. Do subject embeddings capture individual policy variations?

4. Does pooling data across subjects really help?

5. Can learned embeddings generalize beyond task?
Results 1a - Decision-making at population level
Better fits to data

Both DNN & subject embeddings improve fit significantly
Multi-DNN simulation significantly correlates with human behavior ($p < 10^{-10}$)
- Pop-DNN (no subject embeddings) is not correlated with behavior
Evaluation of proposed approach

1. Does our model fit data better?

2. Does the model capture known biases at a population level?

3. Do subject embeddings capture individual policy variations?

4. Does pooling data across subjects really help?

5. Can learned embeddings generalize beyond task?
Results 2a - Model captures biases in behaviour

Approaching the positive bias [1]
Framing (MaxProd vs MinProd) influences whether to sample or guess

Results 2a - Model captures biases in behaviour

Approaching the positive bias [1]
Framing (MaxProd vs MinProd) influences whether to sample or guess

Rejecting the unsampled bias [1]
Subjects less likely to choose a row as answer if they had chosen not to sample from it

Results 2b - Model captures biases in behaviour

Sampling the favourite bias [1]

- Humans choose to sample if offered from current favorite (confirmation bias?)
- Creates suboptimal asymmetry between “find MaxProd” & “find MinProd”

Evaluation of proposed approach

1. Does our model fit data better?

2. Does the model capture known biases at a population level?

3. Do subject embeddings capture individual policy variations?

4. Does pooling data across subjects really help?

5. Can learned embeddings generalize beyond task?
Results 3a - Embeddings capture individual variation

- We correlated the embedding dimensions with behavioral measures in the task
- Learned embeddings do contain information about subjects' performance
 - average embedding values are statistically different across buckets
- Decision time, typically related to subjective uncertainty about choice, is also captured
 - no access to this data during training
Results 3b - Discovering demographics from data

- We compare subject embeddings across education, age and gender
- Subject embeddings covary with education, age and gender
- Model never had access to any of this information
- Subject embeddings learn meaningful things
Evaluation of proposed approach

1. Does our model fit data better?
2. Does the model capture known biases at a population level?
3. Do subject embeddings capture individual policy variations?
4. Does pooling data across subjects really help?
5. Can learned embeddings generalize beyond task?
Results 4 - Sample Complexity

- Fix a group of test subjects (A). Add data from other subjects (additional subjects - B)
- Train on 6-7 trials per subject from A and B. Evaluate on remaining 4 trials for subjects in A
 - *Increasing #subjects in B improves performance*
 - No additional data from group A
- Lack of per subject data compensated for by pooled training
Evaluation of proposed approach

1. Does our model fit data better?

2. Does the model capture known biases at a population level?

3. Do subject embeddings capture individual policy variations?

4. Does pooling data across subjects really help?

5. Can learned embeddings *generalize* beyond task?
Results 5 - Generalization to other tasks

- Subject embeddings correlate with measures on secondary task
 - Approach-avoidance parameter measured on separate gambling-related task [1]
- Mean embedding value significantly different on low/high buckets of approach parameters

Conclusion

We presented a model-agnostic, multi-task approach for modeling human behavior in an information-seeking task.

Key contributions:
- High accuracy fits with sparse data, via pooled learning
- No assumptions about task goals or inductive biases
- Capture individual variation in the task, including biases
- Simple, low-dimensional representation of subjective parameters that generalize beyond current task
Thank You

Model-agnostic Fits for Understanding Information Seeking Patterns in Humans
Soumya Chatterjee and Pradeep Shenoy