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Modeling human decision-making under uncertainty

- Afundamental problem in cognitive science:
- How do humans seek and integrate information while making decisions?
- How do we capture deviations from optimality? individual variation?

- Applications in human-computer or human-Al interactions
- Avoiding “echo chambers” in social media
- Encouraging diversity in recommendations & media consumption
- Building effective cognitive assistants, e.g., health & wellness tracking



Previous Modelling Approaches

- Propose model from first principles of learning/optimization, e.g.,

reinforcement learning [1]
- tweak model to cover idiosyncrasies of specific task

- Propose mechanistic models that fit data, e.g., exponential weighting, or
drift-diffusion models [2]

- Describe the process without explaining the goal

- Challenges in these approaches
- Explanatory power limited by inductive bias proposed by modeler
- Need sufficient data for fitting models

[1] Vision: a computational investigation into the human representation and processing of visual information. Marr, D. 1982. ISBN 0716712849
[2] The diffusion decision model: Theory and data for two-choice decision tasks. Ratcliff, R.; and McKoon, G. 2008, Neural Computation 20(4)



Our work

- Contribution 1: avoid modeler-specified inductive biases
- Deep learning approach for fitting human behavior% Model agnostic ]
- DNN architecture that reflects the structure of the task, but not the goals or rewards
- Recover subjects’ action policies purely by replicating behavior Captures behavioral ]
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- Contribution 2: handle extreme data paucity, for subject-specific models

- Leverage large subject populations and shared parameters Subject-specific fits with )
- Simultaneously learn population-level and individual-level model fits just 6 trials per subject !

- Non-goal for this talk: explaining implicit policies contained in DNNs

- Significantly raise performance bar for alternate predictive/explanatory models
- Future work: interpretable DNN policy learning



Behavioural Task: Sequential sampling & choice

Multi-step sampling task [1]:

- Goal: guess row with max product
- Alternatively, row with min total
- At each step, subject chooses
- Sample from allowed row OR
- Guess final answer
- Cost for sampling; reward/penalty for
guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

Figure adapted from [1] Approach-Induced Biases in Human Information Sampling. Hunt et, al, 2016, PLOS Biology, 14(11)
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Proposed Models

- Baseline: Card Value Based Model [1]

- Simple softmax heuristic model with hand
crafted parameters (population level)

- DNN Population Model (Pop-DNN)

- Cascaded DNNs fitted to behaviour from entire
population

- DNN Subject Specific Model (Subj-DNN)

- Subject specific embeddings
- Other parameters shared across subjects

- Multiple tasks Model (Multi-DNN)

- Multiple nets one for each task
- Shared subject embeddings

[1] Approach-Induced Biases in Human Information Sampling. Hunt et, al, 2016, PLOS Biology, 14(11)
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Evaluation of proposed approach

1. Does our model fit data better?



Results 1a - Decision-making at population level

Better fits to data
Negative Log Likelihood
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Both DNN & subject embeddings improve fit significantly



Results 1b - Model captures behavior variation

Model behavior correlates strongly with human behavior
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Multi-DNN simulation significantly correlates with human behavior (p < 1079)

Pop-DNN (no subject embeddings) is not correlated with behavior



Evaluation of proposed approach

2. Does the model capture known biases at a population level?



Results 2a - Model captures biases in behaviour

Approaching the positive bias [1]
Framing (MaxProd vs MinProd) influences whether
to sample or guess
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[1] Approach-Induced Biases in Human Information Sampling. Hunt et, al, 2016, PLOS Biology, 14(11)
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Rejecting the unsampled bias [1]
Subjects less likely to choose a row as answer if
they had chosen not to sample from it
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[1] Approach-Induced Biases in Human Information Sampling. Hunt et, al, 2016, PLOS Biology, 14(11)



Results 2b - Model captures biases in behaviour
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Evaluation of proposed approach

3. Do subject embeddings capture individual policy variations?



Results 3a - Embeddings capture individual variation
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- We correlated the embedding dimensions with behavioral measures in the task

- Learned embeddings do contain information about subjects’ performance
- average embedding values are statistically different across buckets

- Decision time, typically related to subjective uncertainty about choice, is also captured
- no access to this data during training



Results 3b - Discovering demographics from data
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- We compare subject embeddings across education, age and gender
- Subject embeddings covary with education, age and gender

- Model never had access to any of this information

- Subject embeddings learn meaningful things



Evaluation of proposed approach

4. Does pooling data across subjects really help?



Results 4 - Sample Complexity

Model-human correlations

#Steps/trial Accuracy Scores
0.60 oy 0.16 =
_— 0.15 1 0.120 -
c
8 el 0.14 0.115 1
Q
= 0.110 A
S 0.45 1 s
o 0.12 1 0.105 -
i § v AL LR | v LARRL NN ELRL R | T v L AL AL LA | v LN L LB R RLE | “J v LR SRR | Al LA BRI B ALY |
102 103 104 102 103 104 102 103 10%
#subjects in training #subjects in training #subjects in training

- Fix a group of test subjects (A). Add data from other subjects (additional subjects - B)
- Train on 6-7 trials per subject from A and B. Evaluate on remaining 4 trials for subjects in A
- Increasing #subjects in B improves performance
- No additional data from group A
- Lack of per subject data compensated for by pooled training



Evaluation of proposed approach

5. Can learned embeddings generalize beyond task?



Results 5 - Generalization to other tasks
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Subject embeddings correlate with measures on secondary task
- Approach-avoidance parameter measured on separate gambling-related task [1]
Mean embedding value significantly different on low/high buckets of approach parameters

[1] Dopaminergic Modulation of Decision Making and Subjective Well-Being. Rutledge et, al, 2015, Journal of Neuroscience, 35 (27)



Conclusion

We presented a model-agnostic, multi-task approach for modeling human
behavior in an information-seeking task.

Key contributions:
- High accuracy fits with sparse data, via pooled learning
- No assumptions about task goals or inductive biases
- Capture individual variation in the task, including biases
- Simple, low-dimensional representation of subjective parameters that
generalize beyond current task



Thank You

Model-agnostic Fits for Understanding Information Seeking Patterns in Humans
Soumya Chatterjee and Pradeep Shenoy



