Model-agnostic Fits for Understanding Information Seeking Patterns in Humans

Soumya Chatterjee, Pradeep Shenoy

IIT Bombay

Google Research India

Modeling human decision-making under uncertainty

- A fundamental problem in cognitive science:
 - How do humans seek and integrate information while making decisions?
 - How do we capture deviations from optimality? individual variation?
- Applications in human-computer or human-Al interactions
 - Avoiding "echo chambers" in social media
 - Encouraging diversity in recommendations & media consumption
 - Building effective cognitive assistants, e.g., health & wellness tracking

Previous Modelling Approaches

- Propose model from *first principles* of learning/optimization, e.g., reinforcement learning [1]
 - tweak model to cover idiosyncrasies of specific task
- Propose mechanistic models that fit data, e.g., exponential weighting, or drift-diffusion models [2]
 - Describe the *process* without explaining the *goal*
- Challenges in these approaches
 - Explanatory power limited by *inductive bias* proposed by modeler
 - Need sufficient data for fitting models

Our work

- Contribution 1: avoid modeler-specified inductive biases
 - Deep learning approach for fitting human behavior Model agnostic
 - DNN architecture that reflects the structure of the task, but not the goals or rewards
 - Recover subjects' action policies purely by replicating behavior —

Captures behavioral biases

Our work

- Contribution 1: avoid modeler-specified inductive biases
 - Deep learning approach for fitting human behavior Model agnostic
 - DNN architecture that reflects the structure of the task, but not the goals or rewards
 - Recover subjects' action policies purely by replicating behavior Captures behavioral biases
- Contribution 2: handle extreme data paucity, for subject-specific models
 - Leverage large subject populations and shared parameters
 - Simultaneously learn population-level and individual-level model fits

Subject-specific fits with just 6 trials per subject!

Our work

- Contribution 1: avoid modeler-specified inductive biases
 - Deep learning approach for fitting human behavior Model agnostic
 - DNN architecture that reflects the structure of the task, but not the goals or rewards
 - Recover subjects' action policies purely by replicating behavior Captures behavioral biases
- Contribution 2: handle extreme data paucity, for subject-specific models
 - Leverage large subject populations and shared parameters
 - Simultaneously learn population-level and individual-level model fits

Subject-specific fits with just 6 trials per subject!

- Non-goal for this talk: explaining implicit policies contained in DNNs
 - Significantly raise performance bar for alternate predictive/explanatory models
 - Future work: interpretable DNN policy learning

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

- Goal: guess row with max product
 - Alternatively, row with min total
- At each step, subject chooses
 - Sample from allowed row OR
 - Guess final answer
- Cost for sampling; reward/penalty for guess correctness
- 32445 subjects with 1.2m trials (!)
- Open source

- Baseline: Card Value Based Model [1]
 - Simple softmax heuristic model with hand crafted parameters (population level)
- DNN Population Model (Pop-DNN)
 - Cascaded DNNs fitted to behaviour from entire population
- DNN Subject Specific Model (Subj-DNN)
 - Subject specific embeddings
 - Other parameters shared across subjects
- Multiple tasks Model (Multi-DNN)
 - Multiple nets one for each task
 - Shared subject embeddings

- Baseline: Card Value Based Model [1]
 - Simple softmax heuristic model with hand crafted parameters (population level)
- DNN Population Model (Pop-DNN)
 - Cascaded DNNs fitted to behaviour from entire population
- DNN Subject Specific Model (Subj-DNN)
 - Subject specific embeddings
 - Other parameters shared across subjects
- Multiple tasks Model (Multi-DNN)
 - Multiple nets one for each task
 - Shared subject embeddings

- Baseline: Card Value Based Model [1]
 - Simple softmax heuristic model with hand crafted parameters (population level)
- DNN Population Model (Pop-DNN)
 - Cascaded DNNs fitted to behaviour from entire population
- DNN Subject Specific Model (Subj-DNN)
 - Subject specific embeddings
 - Other parameters shared across subjects
- Multiple tasks Model (Multi-DNN)
 - Multiple nets one for each task
 - Shared subject embeddings

- Baseline: Card Value Based Model [1]
 - Simple softmax heuristic model with hand crafted parameters (population level)
- DNN Population Model (Pop-DNN)
 - Cascaded DNNs fitted to behaviour from entire population
- DNN Subject Specific Model (Subj-DNN)
 - Subject specific embeddings
 - Other parameters shared across subjects
- Multiple tasks Model (Multi-DNN)
 - Multiple nets one for each task
 - Shared subject embeddings

*some details omitted - see paper for details

Evaluation of proposed approach

- Does our model fit data better?
- Does the model capture known biases at a population level?
- 3. Do subject embeddings capture individual policy variations?
- 4. Does pooling data across subjects really help?
- Can learned embeddings generalize beyond task?

Results 1a - Decision-making at population level

Better fits to data

Both DNN & subject embeddings *improve fit significantly*

Results 1b - Model captures behavior variation

Model behavior correlates strongly with human behavior

Multi-DNN simulation *significantly correlates with* human behavior (p < 10^{-10})

Pop-DNN (no subject embeddings) is not correlated with behavior

Evaluation of proposed approach

- Does our model fit data better?
- 2. Does the model capture known biases at a population level?
- 3. Do subject embeddings capture individual policy variations?
- 4. Does pooling data across subjects really help?
- 5. Can learned embeddings *generalize* beyond task?

Results 2a - Model captures biases in behaviour

Approaching the positive bias [1]
Framing (MaxProd vs MinProd) influences whether to sample or guess

Results 2a - Model captures biases in behaviour

Approaching the positive bias [1]

Framing (MaxProd vs MinProd) influences whether to sample or guess

Rejecting the unsampled bias [1]

Subjects less likely to choose a row as answer if they had chosen not to sample from it

[1] Approach-Induced Biases in Human Information Sampling. Hunt et, al, 2016, PLOS Biology, 14(11)

Results 2b - Model captures biases in behaviour

Sampling the favourite bias [1]

- Humans choose to sample if offered from current favorite (confirmation bias?)
- Creates suboptimal asymmetry between "find MaxProd" & "find MinProd"

Evaluation of proposed approach

- Does our model fit data better?
- 2. Does the model capture known biases at a population level?
- 3. Do subject embeddings capture individual policy variations?
- 4. Does pooling data across subjects really help?
- 5. Can learned embeddings *generalize* beyond task?

Results 3a - Embeddings capture individual variation

- We correlated the embedding dimensions with behavioral measures in the task
- Learned embeddings do contain information about subjects' performance
 - average embedding values are statistically different across buckets
- Decision time, typically related to subjective uncertainty about choice, is also captured
 - no access to this data during training

Results 3b - Discovering demographics from data

- We compare subject embeddings across education, age and gender
- Subject embeddings covary with education, age and gender
- Model never had access to any of this information
- Subject embeddings learn meaningful things

Evaluation of proposed approach

- Does our model fit data better?
- 2. Does the model capture known biases at a population level?
- Do subject embeddings capture individual policy variations?
- 4. Does pooling data across subjects really help?
- 5. Can learned embeddings *generalize* beyond task?

Results 4 - Sample Complexity

- Fix a group of test subjects (A). Add data from other subjects (additional subjects B)
- Train on 6-7 trials per subject from A and B. Evaluate on remaining 4 trials for subjects in A
- Increasing #subjects in B improves performance
 - No additional data from group A
- Lack of per subject data compensated for by pooled training

Evaluation of proposed approach

- 1. Does our model fit data better?
- 2. Does the model capture known biases at a population level?
- 3. Do subject embeddings capture individual policy variations?
- 4. Does pooling data across subjects really help?
- 5. Can learned embeddings *generalize* beyond task?

Results 5 - Generalization to other tasks

- Subject embeddings correlate with measures on secondary task
 - Approach-avoidance parameter measured on separate gambling-related task [1]
- Mean embedding value significantly different on low/high buckets of approach parameters

Conclusion

We presented a model-agnostic, multi-task approach for modeling human behavior in an information-seeking task.

Key contributions:

- High accuracy fits with sparse data, via pooled learning
- No assumptions about task goals or inductive biases
- Capture individual variation in the task, including biases
- Simple, low-dimensional *representation* of subjective parameters that generalize beyond current task

Thank You

Model-agnostic Fits for Understanding Information Seeking Patterns in Humans Soumya Chatterjee and Pradeep Shenoy