Person/Object Detection on 360° Images

Restaurant R&D Project

Soumya Chatterjee

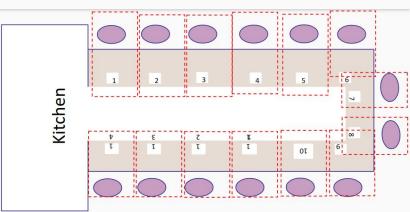
Note: Images have been removed due to NDA

Restaurant Project

About the Project

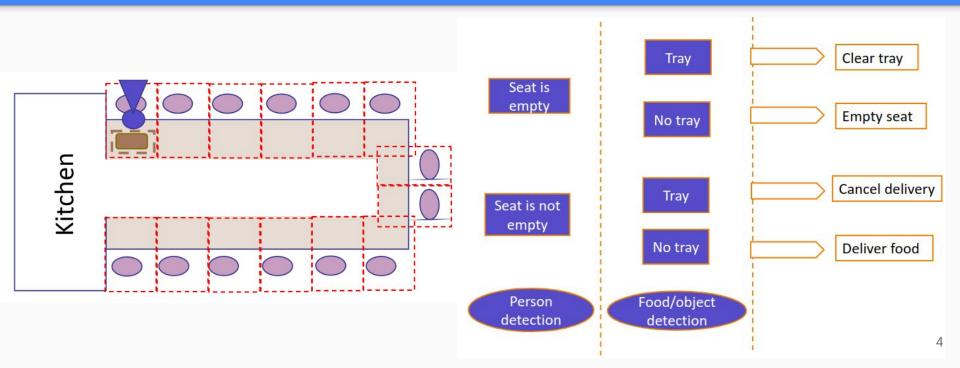
Goals

- Finding time elapsed from seating to delivering order
- Detect food delivery to customer and automatically cancel dispatch
- When customer leaves, notification to clear the tray



Fisheye Projection

Proposed Method

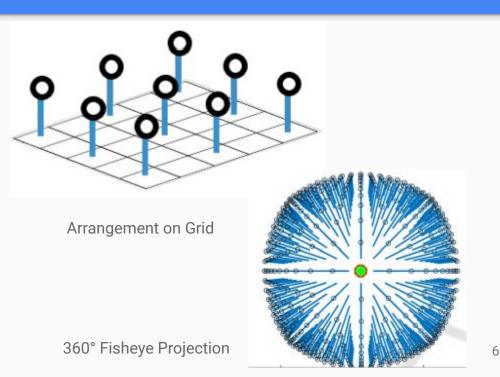


Different Projections of 360° camera

Cube Projection

Challenges with 360° camera

- Objects look very different and distorted in Fisheye projections
- Objects at different locations different orientations in the images
- Existing models do not focus 360° images



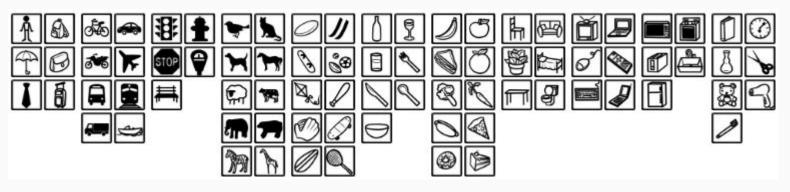
COCO Dataset

Common Objects in Context

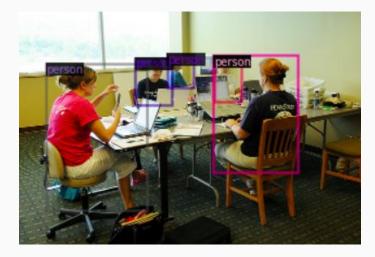
- COCO is a large-scale object detection, segmentation, and captioning dataset
- 200K labeled images
- 80 object categories
- 250000 instances people with keypoints

Supercategories -

outdoor food indoor appliance sports person animal vehicle furniture accessory electronic kitchen

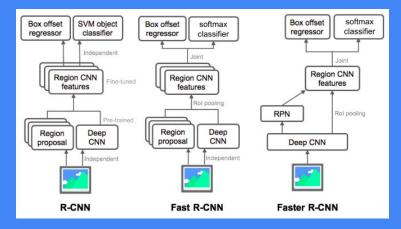


Example Images



Object Detection

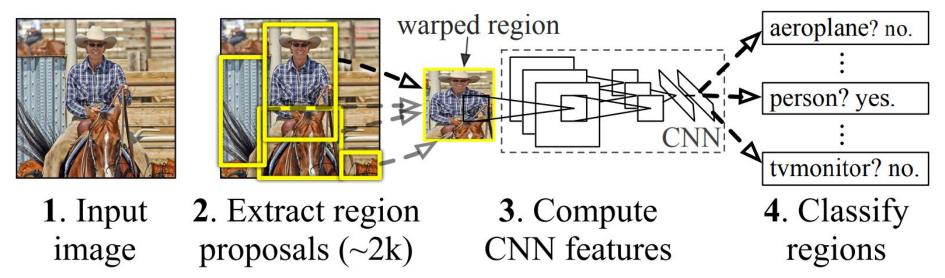
Instance Segmentation



R-CNN Family of Detectors

R-CNN

R-CNN: Regions with CNN features

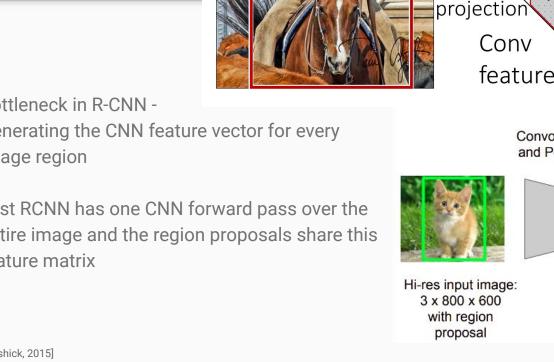


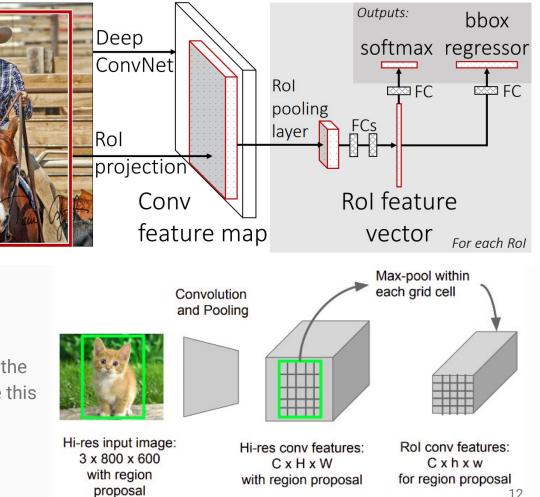
Rich feature hierarchies for accurate object detection and semantic segmentation [Girshick et al., 2013]

Fast R-CNN

Bottleneck in R-CNN -Generating the CNN feature vector for every image region

Fast RCNN has one CNN forward pass over the entire image and the region proposals share this feature matrix

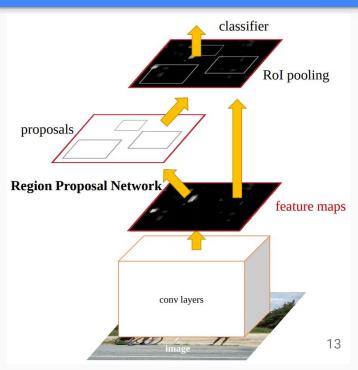




Faster R-CNN

Bottleneck in Fast R-CNN Region proposals are generated separately by another model and that is very expensive

Integrate the region proposal algorithm into the CNN model

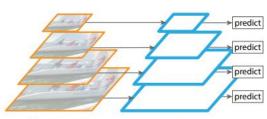


Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [Ren et al, 2015]

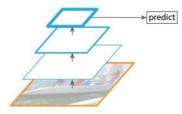
Detectron2 Resnet50-FPN Faster RCNN

Feature Pyramid Network - FPN

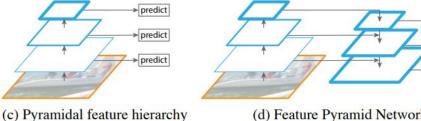
- Feature pyramids were recognition systems for detecting objects at different scales
- Deep learning object detectors have avoided pyramid representations because they are computation and memory intensive
- The paper uses multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost



(a) Featurized image pyramid



(b) Single feature map



(d) Feature Pyramid Network

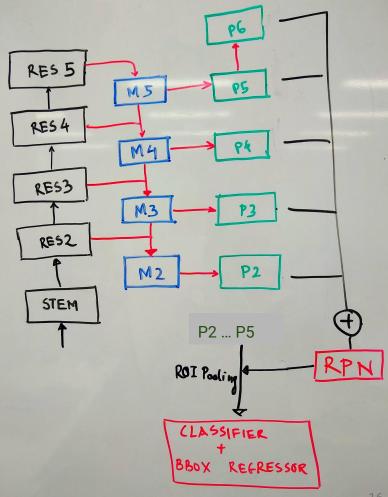
predict

predict

predict

Complete Architecture

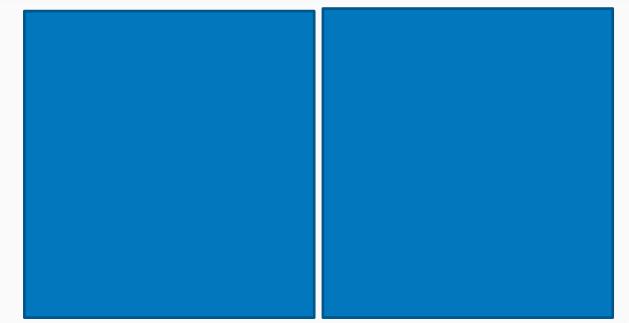
- Resnet 50 Backbone (in black)
- FPN on ['res2', 'res3', 'res4', 'res5']
- RPN uses ['p2', 'p3', 'p4', 'p5', 'p6']
- Rol Heads use ['p2', 'p3', 'p4', 'p5']
- Anchor Boxes
 - Aspect Ratios: [[0.5, 1.0, 2.0]]
 - Sizes: [[32], [64], [128], [256], [512]]



Person Detection

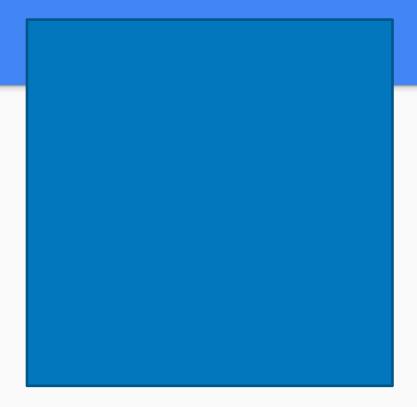
Pretrained Detectron

Results are good only in the upper parts of the image where the 360 images resemble normal images of people in COCO



Finetuning with Augmentation

- Finetuning Dataset:
 - Person images in COCO
- Data Aug:
 - Uniform(-180, 180) rotation
- Prediction Time: 0.05 sec/image
 - \circ Max. achievable FPS ~ 20
- Most people detected but low confidence for people in non-standard orientations



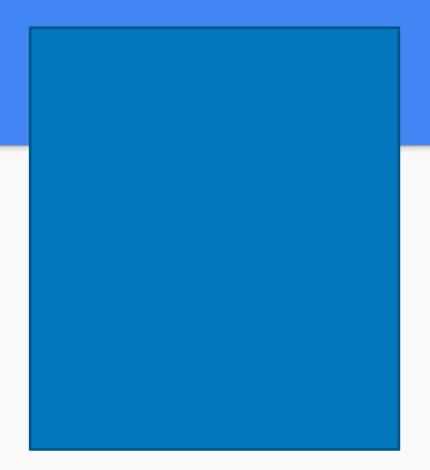
mAP of Person class

	Pretrained	Finetuned
No random rotation during validation	44.29	53.20
Random rotation during validation	15.886 (± 0.31749)	36.68 (± 0.61305)

Head Detection

Detectron Finetuned on Head dataset

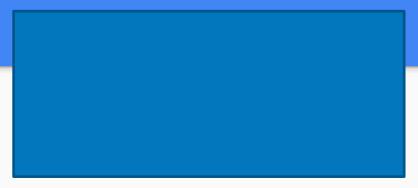
- Motivation:
 - When viewpoint is not proper to view the whole body or it is too crowded, the body annotation can lead to unexpected overlapping bounding boxes
 - $\circ~$ Can be avoided by using head annotation
- Observations:
 - Almost all heads detected with high confidence
 - $\circ~$ False positives bowls detected as heads



Object Detection

Detectron Finetuned on Relevant Objects

- Dataset: COCO
 - [bottle, cup, fork, spoon, knife, bowl, cell phone, handbag]
- Data Aug: Uniform(-15, 15) rotation
- Observations
 - Detection results are poor
 - Some bowls get detected but as cups
- Possible reason for failure
 - Absence of proper dataset



Multi-label Classification (WIP)

Instead of Person and Object Detection, multi-label classification can be done in each service area

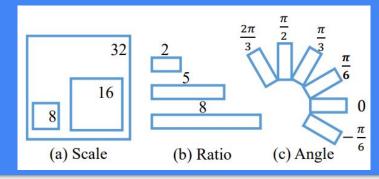
Preliminary Experiment

- COCO Dataset Apples and Bananas classes
- Simple VGG Net + FC layer
- Accuracy (similar to IoU) ~ 70%
- Per class accuracy ~ 70% for both

Need to find suitable dataset, losses and evaluation metrics

tensor([0., 1.]) tensor([0., 1.])

tensor([1., 1.]) tensor([0., 1.])



Future Work

- Compare with other pretrained models of Detectron
- Use a Rotated RPN
- Improve augmentation by using segmentation maps for tighter bounding boxes
- Detection on Fisheye images converted to hemi cube

